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Section I General Physics 

Chapter 1 Physics and physical measurement 

1.1 Measurement and uncertainties 

1-1-1 SI units 

In general, a physical quantity is made up of two parts: numerical magnitude 

+ unit. 

For example, the distance from school to your home is 1000 m. then 1000 is 

the numerical magnitude and m (meter) is its unit. 

(i) SI Units 

There are seven SI Units shown in table 1.1: 

Table 1.1 SI Units 
SI Units 

Base quantity 
Name Symbol

Mass Kilogram kg

Length Meter m

Time Second s

Thermodynamic temperature Kelvin K 

Electric current Ampere A 

Amount of substance Mole mol 

Luminous intensity candela cd 

Other units are derived from these: (table 1.2) 

Table 1.2 Examples of SI derived Units 
Physical quantity Defining equation Derived unit Special symbol 

Speed Distance × time 1m s  -- 

Acceleration Speed/time 2m s  -- 

Force mass×acceleration 2kg m s   N(Newton) 

Work force×distance N m  J(joule) 

Density Mass/volume 3kg m  -- 

Charge current×time A s  C(coulomb) 

Pressure Force/area 2N m  Pa(Pascal) 

Resistance Voltage/current 1V A   (ohm) 

voltage Energy/charge 1J C  V(volt) 

1-1-2 Prefixes 

Prefixes can be added to SI and derived units to make larger or smaller units 

http://www.mppe.org.uk

Copyright  © mppe.org.uk and its license. All Rights Reserved 



as shown in table 1.3: 

Table 1.3 Prefixes 
Value prefix symbol Value prefix symbol 

2410 yotta Y 110 deci d
2110  zeta Z 210 centi c
1810 exa E 310 milli m 
1510 peta P 610 micro μ 
1210 tera T 910 nano n
910  giga G 1210 pico p
610  mega M 1510 femto f
310  kilo k 1810 atto a
210  hecto h 2110 zepto z
110  deka da 2410 yocto y

For example: 

1 kilometer = 1 km = 103 m 

1 microgram = 1 μg = 10-6 g 

1 mega meter = 1 M m = 106 m 

1 millimeter = 1 m m = 10-3 m 

1.2 measurement 

1-2-1 uncertainties 

There is an uncertainty associated with every measurement. Uncertainty 

arises from different sources. 

(i) Systematic uncertainties: 

That arises from the measuring system. 

(ii) Random uncertainties: 

That arises from the sensitivity of the measuring instrument or the readings 

obtained. 

For example, measure the length of a desk using a tape, the readings: 

1.5 m 1.6 m 1.7 m 1.4 m 1.3 m  

You can find the average value of above readings: 2.5 m, and then the length 

of the desk can be written as 

L = 2.5 ± 0.2 

Where 0.2 m is the uncertainty 
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(iii) Percentage uncertainty 

Percentage uncertainty is the ratio of the uncertainty to the measured value, 

multiplied by 100. For example, in the measurement above, the percentage 

uncertainty is given by 
0.2

100 8%
2.5

   

(iv) Scientific notation 

Numbers written in “powers of 10” are in scientific notation. For example, 

4850000 can be written as . 0.00023 can be written as . 64.85 10 42.3 10

The advantage of scientific notation is that it can clearly express the 

significant figures of the numbers. 

For example, if we know that 4850000 has three significant numbers, it can 

be written as . If it has 5 significant numbers, it can be written as 

. 

64.85 10
64.8500 10

(v) Combining uncertainties 

Say that there are some measurements A, B, C…

★And if A = B + C or A = B – C  

Then: 

Uncertainty in A = Uncertainty in B + Uncertainty in C 

Note: of course, if A = B + C – F – E, then 

Uncertainty in A = Uncertainty in B + Uncertainty in C + Uncertainty in F + 

Uncertainty in E 

★if  or A B C  BA C , then

Percentage Uncertainty in A = Percentage Uncertainty in B + Percentage 

Uncertainty in C 

Note: if  or A B C E  
B

A E
C

  , then 

Percentage Uncertainty in A = Percentage Uncertainty in B + Percentage 

Uncertainty in C + Percentage Uncertainty in E 

1-2-2 Uncertainties in graphs 

A car accelerates from stationary, and here are some readings of speed at 

http://www.mppe.org.uk

Copyright  © mppe.org.uk and its license. All Rights Reserved 



                       

different time shown in the graph below: 

Say that the readings arise from random uncertainty; the uncertainty is 

estimated in the readings. And then calculate the maximum and minimum 

values for that reading, shown in the graph (Fig. 1.1).  

In the graph, the short、vertical lines are called uncertainty bars. 

1.3  6 Worked examples 

1. The length of each side of a sugar cube is measured as 10 mm with an

uncertainty of ± 2 mm. 

What is the absolute uncertainty in the volume of the sugar cube? 

Solution: 

Present uncertainty of each side is given by 
2

100 20%
10

   

The volume of the sugar cube is  310 10 10 1000 mm  
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Thus, the combining uncertainty is 20% + 20% + 20% = 60% 

Therefore, the absolute uncertainty is given by 
3 31000 60% 600e mm mm     

2. The current in a resistor is measured as 2.00 A ± 0.02 A. what is the

(absolute) uncertainty and the percentage uncertainty in the current? 

Solution: 

From 2.00 A ± 0.02 A, the uncertainty is ± 0.02 A. 

The percentage uncertainty is given by 
0.02

100 1%
2.00


  

3. A volume is measured to be 25 mm3, express the volume in m3.

Solution: 
31 10mm m , thus 

   33 3 91 10 10mm m m   3  

4. When measuring the acceleration of free fall at the surface of the Earth the

following results (table 1.4) were obtained. The results are accurate? 

Or precise? 

Table 1.4 
Acceleration of free fall / ms -2 

7.69 

7.70 

7.69 

7.71 

7.66 

Solution: 

We know that the acceleration of free fall is 9.801 ms -2 , thus the results are 

inaccurate. But the results are to be in conformity with one another, the 

results are precise. 

5. The frequency f of the fundamental vibration of a standing wave of fixed

length is measured for different values of the tension T in the string, using the 

apparatus shown (Fig. 1.2). 
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In order to find the relationship between the speed v of the wave and the 

tension T in the string, the speed v is calculated from the relation 
2v f L  

Where L is the length of the string. 

The data points are shown plotted on the axes below (Fig. 1.3). The 

uncertainty in v is ±5 ms–1 and the uncertainty in T is negligible. 

(a) Draw error bars on the first and last data points to show the uncertainty in 

speed v. 

(b) The original hypothesis is that the speed is directly proportional to the 

tension T. 

Explain why the data do not support this hypothesis. 

Solution: 

If the speed is directly proportional to the tension T, it is a straight line goes 

through the origin and the error. But on the graph, it can not be drawn. 

(c) It is suggested that the relationship between speed and tension is of the 
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form 

v k T

where k is a constant. 

To test whether the data support this relationship, a graph of v2 against T is 

plotted as shown below (Fig. 1.4). 

Fig. 1.4 graph of v2 against T

The best-fit line shown takes into account the uncertainties for each data 

point. The uncertainty in v2 for T = 3.5 N is shown as an error bar on the 

graph. 

(i) State the value of the uncertainty in v2 for T = 3.5 N. 

Solution: 

From the graph, the uncertainty in v2 for T = 3.5 N is  2 2500m s

(ii) At T = 1.0 N the speed v = 27 ±5 ms–1. Calculate the uncertainty in v2. 

Strategy: 

★if  or A B C  BA C , then

Percentage Uncertainty in A = Percentage Uncertainty in B + Percentage 

Uncertainty in C 

Solution: 

Percentage Uncertainty in v2 = Percentage Uncertainty in v + Percentage 

Uncertainty in v 

Thus, Percentage Uncertainty in v2 = 5
2 100 37%

27
  
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Therefore, the uncertainty in v2 is 2 227 27 37% 270v m 2s      

(d) Use the graph in (c) to determine k without its uncertainty. 

Solution: 

The gradient of the straight line represents . Thus  2k
3

2 2.55 10

4
k


 , gives  25k 

6. Which of the following graphs shows the best-fit line for the plotted

points? 

Solution: 

The best-fit line should be goes through the error bar. Thus choose (A) 

1.4 Vectors and scalars 

1.4.1 Addition of vectors 

1.1 Definition of scalars and vectors 

Scalar: quantity has direction only. 

Examples of scalar: mass, temperatures, volume, work… 

Vector: quantity both has magnitude and direction  

Examples of vectors: force, acceleration, displacement, velocity, 

momentum… 

Representation of vectors: any vectors can be represented by a straight line 

with an arrow whose length represents the magnitude of the vectors, and the 

direction of the arrow gives the direction of the vectors. 
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Vector Notation: use an arrow , ,A S B
  

… 

Or use the bold letter A, B, S… 

When considering the magnitude of a vector only, we can 

use the italic letter A, B, S… 

1.2 Addition of vectors: 

When adding vectors, the units of the vectors must be the same, the direction 

must be taken into account. 

Addition Principles:  

:ⅰ  if two vectors are in the same direction: the magnitude of the resultant 

vector is equal to the sum of their magnitudes, in the same direction.  

:ⅱ  if two vectors are in the opposite direction: the magnitude of the resultant 

vector is equal to the difference of the magnitude of the two vectors and 

is in the direction of the greater vector. 

:ⅲ  if two vectors are placed tail-to-tail at an angle  , it can also be 

represented as a closed triangle (Fig. 2.1). 



OA AC OC 
  

OB AC
 

  Because 

OA and OB
 

 are placed tail to tail to form two adjacent sides of a 

parallelogram and the diagonal OC


gives the sum of the vectorsOA and OB
 

. 

This is also called as ‘parallelogram rule of vector addition. 

Addition Methods: 

ds----using scale drawings 

 at right angle, and F1 = 3 N, F2 = 4 N, determine the 

  

(i): Graphical Metho

 For example: 

  F1 and F2 are

resultant force F (Fig. 2.2). 

Let 1cm=1N 
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Measure the length of the resultant vector, we get length = 5cm, then 

resultant force, F = 5 N. 

(ii) Algebraic Methods 

   For example: 

F1 and F2 are at right angle, and F1 = 3 N, F2 = 4 N, determine the resultant 

force F (Fig. 2.3). 



Using the Pythagorean Theorem: 

Magnitude of the resultant force, 2 2 2 2
1 2 3 4 5F F F N    

The angle   between F and F1 is given by: 

2

1

4
tan

3

F

F
  

Or  

2 4
sin

5

F

F
  

Or  

1 3
cos

5

F

F
  
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1.4.2 Resolving a vector into two perpendicular components 

For example, for a vector , OC


 is known, resolving it horizontally and

vertically (Fig. 2.4). 



Magnitude of Horizontally component cosOA OC   

Magnitude of vertically component sinOB OC   

Thus, a force can be resolved into two perpendicular components (Fig. 2.5): 

F and   are known. 

Fig. 2.5 Resolving a force into two 
perpendicular components

y
F


Fx

Y

X

F

cosxF F  sinyF F        

1.4.3  10 Worked examples 

1. Representation of vectors:

(i) A displacement of 500 m due east 

Represent the displacement:  
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Let scale:  1 100cm m

Then 

Note: of course you can also let scale: 1 250cm m

Then:  

(ii) A force of (or F=100N) due north. 100F 


N

Let scale:  1 50cm N

Then  

2. Addition of the vectors 1 23.5 , 7.5F N F N 
 

1 2F and F
 

2

(i) are in the same direction. 

Magnitude of the resultant 1F 1F F N1  

Direction: the same direction of 1 2F and F
 

1 2F and F
 

(ii) are in the opposite direction. 

Magnitude of the resultant 2 1F 4F F N  

Direction: the same direction of 2F


1 2F and F
 

(iii)  are at right angles to each other. 

Using the algebraic methods: 

Magnitude of the resultant:  
2 2

1 2F 12.25 68.5 9F F N    
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

Direction: 

2

1

7.5
tan 2.14 arctan 2.14

3.5

F
Then

F
      

3. Calculate the resultant force of , ,1F 2F 3F

Strategy:  calculate the resultant of ① 1 2F and F

12 2 1 2F F F N  

② calculate the resultant force of , that is the resultant force 

of

12 3F and F

1 2 3,F F and F

Magnitude of resultant force: 
2 2 2 2

12 3 2 6 6.32F F F N    

Direction: 

12

3

2 1
tan

6 3

F

F
   

1
arctan

3
 

4. A crane is used to raise one end of a steel girder off the ground, as shown

in fig. 2.6. When the cable attached to the end of the girder is at 20°to the 

vertical, the force of the cable on the girder is 6.5kN. Calculate the horizontal 
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www.mppe.co.uk 

and vertical components of this force. 

Strategy: 

Resolving the force F = 6.5 kN 

F1

F2

F

200

1 sin 20 6.5sin 20 2.2o oF F kN    (Horizontal components of the force) 

2 cos 20 6.5cos 20 6.1o oF F kN    (Vertical components of the force) 

5. (a) (i) State what is meant by a scalar quantity.

Scalar quantity: quantity has direction only.

(ii) State two examples of scalar quantities. 

Example 1: mass 

Example 2: temperatures 

(b) An object is acted upon by two forces at right angles to each other. One of 

the forces has a magnitude of 5.0 N and the resultant force produced on the 

object is 9.5 N. 

Determine 

(i) The magnitude of the other force, 

Strategy: adding of vectors, using the Algebraic Methods 

Draw the forces below: 
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And 2 2 2
1 2F F F 

2 2 2
25 9.5F 

2 8.1F NSo, 

(ii) The angle between the resultant force and the 5.0 N force. 

  1 5
cos 0.53

9.5

F

F
   

0arccos 0.53 58  

F ma

 

So 

6. (a) State the difference between vector and scalar quantities.

Answers: Vector quantities have direction and scalar quantities do not.

(b) State one example of a vector quantity (other than force) and one example 

of a scalar quantity. 

Vector quantity: velocity, acceleration. 

Scalar quantity: mass, temperature. 

(c) A 12.0 N force and a 8.0 N force act on a body of mass 6.5 kg at the same 

time. For this body, calculate 

(i) The maximum resultant acceleration that it could experience, 

  Strategy: by the Newton’s second law,  , the maximum resultant 

acceleration when the body has the maximum resultant force. And when the 

two forces are at the same direction, the body has the maximum resultant 

force.  

So, resultant force, 1 2 8 20F F F N    12

So the maximum resultant acceleration, 220
3.1

6.5

F
a ms

m
  

F ma

(ii) The minimum resultant acceleration that it could experience. 

  Strategy: by the Newton’s second law,  , the minimum resultant 

acceleration when the body has the minimum resultant force. And when the 
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two forces are at the opposite direction, the body has the minimum resultant 

force.  

That is, resultant force,  1 2 8 4F F F N    12

So the minimum resultant acceleration, 24
0.62

6.5

F
a ms

m
  

7. Figure 2.7 shows a uniform steel girder being held horizontally by a crane.

Two cables are attached to the ends of the girder and the tension in each of 

these cables is T. 

C

420420

T
T

Fig. 2.7

(a) If the tension, T, in each cable is 850 N, calculate 

(i) The horizontal component of the tension in each cable, 

 Answers: cos 42 850 cos 42 632hT T N   

sin 42 sin 42 1138vT T T N  

1138vW T N

(ii) The vertical component of the tension in each cable, 

   

(iii) The weight of the girder. 

   Strategy: the girder is at a uniform state, so the weight of the girder is 

equal to the vertical component of the tension. 

So weight,  

(b) On Figure 2.7 draw an arrow to show the line of action of the weight of 

the girder. 

8. Which of the following contains three scalar quantities?
A Mass Charge Speed

B Density Weight Mass
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C Speed Weight Charge

D Charge Weight Density

Solution: 

Scalar: quantity has direction only. 

Examples of scalar: mass, temperatures, volume, work… 

Vector: quantity both has magnitude and direction  

Examples of vectors: force, acceleration, displacement, velocity, 

momentum… 

weight m g 


 is a vector. Thus choose (A)And 

9. The diagram below shows two vectors X and Y.

Which of the following best represents the vector Z = X – Y. 

Strategy: 

If two vectors are placed tail-to-tail at an angle , it can also be represented as 

a closed triangle. 



OA AC OC 
  

OB AC
 

  Because 

Solution: 

And X = Z + Y, thus choose (B) 
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10. The magnitude and direction of two vectors X and Y are represented by

the vector diagram below. 

Which of the following best represents the vector (X–Y)? 

Solution: 

Let X minus Y to be Z: X–Y = Z, thus X = Z + Y 

Choose (D): 
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Section II Newtonian mechanics 

Chapter 1 Kinematics 

1.1 Linear motion 

1.1.1 Displacement and velocity 

Distance: is the magnitude of the path covered, is a scalar. 

SI unit: metre (m) 

Displacement: the change in position between the starting point and the end 

point. 

SI unit: metre (m) 

Displacement is a vector; its direction is from the starting point to end point. 

For example: 

(i) An ant crawl along the arc that start from O to A (Fig. 1.1), 

Then:  

Distance 3.14R m   

Displacement 2OA m 


 

(ii) The ant now goes on crawling from A to B, 
Distance 1 4.14OCA AB R m    


Displacement 1OB m   

(iii) The ant now goes back from B to O, 

Note: the ant start from O then go back to O. that is starting point is O, the 

end point is O. 
Distance 2 5.14OCA AO R m    


Displacement 0OO m 
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Speed: the distance traveled by a moving object over a period of time. 

Constant speed: the moving object doesn’t change its speed. 
tandis ce

time taken

s
v

t





( )average speed

Unit: 1m / s or ms  

Velocity: the speed in a given direction. 

Average velocity: the change in position (displacement) over a period of 

time. 

change in position displacement x s

time taken time taken t t


   


averagev



s


Where  is displacement 

Unit: 1m / s or ms  

Velocity is a vector; the direction is the same as the direction of the 

displacement. 

Instantaneous velocity: the velocity that the moving object has at any one 

instance 

1.1.2 Acceleration 

Changing velocity (non-uniform) means an acceleration is present. 

We can define acceleration as the change of velocity per unit time. 

Uniform acceleration: the acceleration is constant, means the velocity of the 

moving object changes the same rate. 

Average acceleration: change in velocity over a period of time. 

Average acceleration
change in velocity

time taken


In symbol: 

average
v v u

a
t t

 
 


Where, v is the final velocity, u is the initial velocity. 

SI unit: Meters per second squared (m/s2) 

Acceleration is a vector; the direction is the same as the direction of the 

change of velocity. 
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1.1.3 Equations for uniform acceleration 

Consider a body is moving along a straight line with uniform acceleration, 

and its velocity increases from u (initial velocity) to v (final velocity) in time 

t. 

First equation: 

acceleration
change in velocity

time taken

v u
a

t






So  

at v u  v u at or …… ①  

Second equation: 
change in position displacement

average velocity
time taken time taken

x s
v

t t

 


 

 

Because the body is moving along a straight line in one direction, the 

magnitude of the displacement is equal to the distance. 

And for the acceleration is uniform, 

,
2

v u
vthe average velocity




So 

2

v u

t

s  or v  
( )

2

v u
s t




v u at 

…… ② 

Third equation: 

From equation ①,  and equation ②, ( )

2

v u
s t




2( ) 1

2 2

u at u
s t ut at

 
  

v u at

…… ③ 

Fourth equation: 

From equation,  

We get: 
2 2

2 2 2 2 2 2

( )

1
2 2 ( )

2

v u at

v u uat a t u a ut at

 

     
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But 21

2
s ut at 

2 2 2v u as 

So  

 …… ④

1.1.4 Displacement—time graphs 

Note: for a body moving along a straight line, we can only draw the 

displacement—time graphs (Fig. 3.2) 

(i) Represents the body moving along a straight line with constant velocity; 

And the slope or gradient of the displacement—time graph represents the 

velocity of the body. 

(ii) The body keeps rest with displacement S2. 

(iii) The body keeps rest with zero displacement. 

(iv) The body moving along the opposite direction with constant velocity and 

initial displacement S0.

(v) The point P means the displacement when the objects meeting with each 

other. 

(vi) Displacement of the body is S1 at time t1.
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1.1.5 Velocity—time graphs 

(i) represents the body moving along a straight line with constant acceleration; 

And the slope or gradient of the velocity—time graph represents the 

acceleration of the body. 

(ii) The body moving with constant velocity V2. 

(iii) The body keeps rest with zero velocity. 

(iv)The body moving along a straight line with constant deceleration with 

initial velocity V0; and the slope or gradient of the velocity—time graph 

represents the deceleration of the body  

(v)The point P means the same velocity when the objects meeting with each 

other. 

(vi)Velocity of the body is V1 at time t1 and the area under a velocity—time 

graph measures the displacement traveled. 

1.2 Non-linear motion 

1.2.1 Free-fall motion 

The motion of a body that is only acted on by gravity and falls down from 

rest is called free-fall motion. This motion can occur only in a space without 

air. If air resistance is quite small and neglectable, the falling of a body in the 

air can also be referred to as a free-fall motion. 

Galileo pointed out: free-fall motion is a uniformly accelerated rectilinear 

motion with zero initial velocity. 
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1.2.1.2 Acceleration of free-fall body 

All bodies in free-fall motion have the same acceleration. This acceleration is 

called free-fall acceleration or gravitational acceleration. It is usually 

denoted by g.  

The magnitude of gravitational acceleration g / ( 2m s ) 

Standard value:  29.80665 /g m s

s

The direction of gravitational acceleration g is always vertically downward. 

Its magnitude can be measured through experiments. 

Precise experiments show that the magnitude of g varies in different places 

on the earth. For example, at the equator . We take 

for g in general calculations. In rough calculations,  is used. 

29.780 /g m

10 /m s

29.81 /m s

2

As free-fall motion is uniformly accelerated rectilinear motion with zero 

initial velocity, the fundamental equations and the deductions for uniformly 

accelerated rectilinear motion are applicable for free-fall motion. What is 

only needed is to take zero for the initial velocity (u) and replace acceleration 

a with g. 

1.2.2 Drag force and terminal speed 

Any object moving through a fluid experiences a force that drags on it due to 

the fluid. The drag force depends on: 

(i) The shape of the object 

(ii) Its speed 

(iii) The viscosity of the fluid which is a measure of how easily the fluid 

flows past a surface. 

Note: the faster an object travels in a fluid, the greater the drag force on it. 

1.2.2.1 Drag force in air 

Considering an object released from rest in air, and then the speed of the 

object increases as it falls, so the drag force on it due to the fluid increases. 

The resultant force on the object is the difference between the force of gravity 

on it (its weight) and the drag force. As the drag force increases, the resultant 

force decreases, so the acceleration becomes less as it falls. If it continues 

falling, it attains terminal speed, when the drag force on it is equal and 

opposite to its weight. Its acceleration is then zero and its speed remains 

constant as it falls. 
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And at any instant, the resultant force F = mg－D, where m is the mass of the 

object and D is the drag force. 

Therefore, the acceleration of the object, mg D D
a g

m m


  

6

Note:  

(i) The initial acceleration = g because the speed is zero, and therefore the 

drag force is zero; at the instant the object is released. 

(ii) At the terminal speed, the potential energy lost by the object is converted, 

as it falls, to internal energy of the fluid by the drag force. 

1.2.2.2 Drag force in liquid 

An object moving through a fluid experiences a resistive force, or drag, that 

is proportional to the viscosity of the fluid. If the object is moving slowly 

enough, the drag force is proportional to its speed v. if the object is a sphere 

of radius r, the force is  

F rv

Where   is again the coefficient of viscosity. This equation is known as 

Stokes’s law. Stokes’s law can be used to relate the speed of a sphere falling 

in a liquid to the viscosity of that liquid. 

Consider a solid sphere of radius r dropped into the top of a column of liquid 

(Fig. 1.1). At the top of the column, the sphere accelerates downward under 

the influence of gravity. However there are two additional forces, both acting 

upward: the constant buoyant force and a speed-dependent retarding force 

given by Stokes’s law. When the sum of the upward forces is equal to the 

gravitational force, the sphere travels with a constant speed , called the 

terminal speed. To determine this speed, we write the equation for the 

equilibrium of forces: 

tv

grav buoyant dragF F F 

We can express the gravitational force in terms of the density   of the 

sphere, its volume 34

3
r , and g: 

34

3gravF r g 
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The buoyant force is equal to the weight of the displaced liquid, which has a 

density  ′ρ： 

34

3buoyantF r g 

6 tdragF rv

The retarding force is expressed by Stokes’s law with the speed : tv



Combining these equations, we get an expression for the terminal speed: 
22 ( )

9t
r gv  


    

The terminal speed is also called the sedimentation speed by biologists and 

geologists. 



, 

Note: Stokes’s law applies for situations in which the fluid flow is laminar, 

but not when the flow becomes turbulent. 

But whenever an object moves rapidly enough, the retarding force F depends 

not on the speed (Stokes’s law), but on the square of the speed: 
2F bv  

Where b is a constant determined for each different case. 

An object falling from rest through the air falls with increasing speed until, at 

the terminal speed , the retarding force of the air is equal in magnitude to tv
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the gravitational force: 
2

tmg bv

Thus, the terminal speed can be written as 

t
mgv
b



Where the constant b depends on the density   of the air and the area A of 

the body presented to the air flow. Then the equation for the terminal speed is 

2D

t
AC

mgv 

Where CD is called the drag coefficient. This equation also holds for objects 

moving horizontally through the air at any speed if mg is replaced by the 

retarding, or drag, force on the object. Thus, the aerodynamic drag on a 

moving object, such as a car, becomes approximately 

20.65drag DF C Av

1.3  17 worked examples 

1. An aero plane taking off accelerates uniformly on a runway from a

velocity of  to a velocity of 13ms 190ms  in 45s. 

Calculate: 

(i) Its acceleration. 

(ii) The distance on the runway. 

Solution: data:  1 13 93u ms v ms t    45s

Strategy: v u
v u at a

t


    , 21

2
s ut at 

Answers: 

193 3
2

45

v u
a ms

t
 

  

2 21 1
3 45 2 45 2160 2.16

2 2
s ut at m km        

2. A car accelerates uniformly from a velocity of 115ms  to a velocity of

 with a distance of 125m. 125ms
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Calculate: 

(i) Its acceleration 

(ii) The time taken 

Solution: 

Data:  1 115 25 125u ms v ms s    m

Strategy: 
 2 2

2 2 2
2

v u
v u as a

s


   

v u
v u at t

a


   

Answers: 
 2 2 2 2

225 15
1.6

2 2 125

v u
a m

s
s

 
  


25 15

6.25
1.6

v u
v u at t s

a

 
     

3. A racing car starts from rest and accelerates uniformly at  in 

30seconds, it then travels at a constant speed for 2min and finally decelerates 

at  until it stops, determine the maximum speed in km/h and the total 

distance in km it covered. 

22ms

23ms

Strategy:  

First stage: , 1 20 2u ms a ms t    30 160v u at mss     

Second stage: moving with a constant speed 160ms  for 2min. 

Third stage:  1 1 260 0 3 ( )u ms v ms a ms decelerat     ion

Answers: 

First stage:  160v u at ms  

2 2
1

1 1
2 30 900

2 2
s ut at m       

Second stage: the final speed of the first stage is the constant speed of the 

second stage. 

2 60 2min 60 2 60 7200

(1min 60 )

s vt m

s

      


Third stage: 
2 2 2

2 2
3

0 60
2 600

2 2 ( 3)

v u
v u as s m

a

 
     

 

So  

Maximum speed = 1 60
60 60 60 216 /

1000
ms km h    
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Total distance = s s 1 2 ++s 3 =900+7200 +600 =8700m =8.7k m 

4. Figure 4.1 shows the shuttle spacecraft as it is launched into space.

Fig. 4.1 shuttle spacecraft 
launching into space

During the first 5 minutes of the launch the average acceleration of the 

shuttle is . 214.5ms

a. Calculate the speed of the shuttle after the first 5 minutes.

b. Calculate how far the shuttle travels in the first 5 minutes.

Data: 1 20 , 14.5 , 5min 300secu ms a ms t    

Strategy: 21
,

2
v u at s ut at   

0 14.5 300 4350 4.35v u at m km      Answers: a.  

b. 2 21 1
0 14.5 300 652500 652.5

2 2
s ut at m km       

5. Figure 5.1 shows an incomplete velocity—time graph for a boy running a

distance of 100m. 

a. What is his acceleration during the first 4 seconds?

b. How far does the boy travel during (i) the first 4 seconds, (ii) the next 9

seconds? 

c. Copy and complete the graph showing clearly at what time he has

covered the distance of 100m. Assume his speed remains constant at the 

value shown by the horizontal portion of the graph. 
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Solution: 

a. the gradient of the velocity—time graph represents the acceleration of the

body. 

During the first 4 seconds, 5
gradient 1.25

4
 

2acceleration 1.25ms

b. (i) the area under a velocity—time graph measures the displacement

traveled. 

1
1

4 5 10
2

area S    

Displacement 10m  

(ii) The next 9 seconds, 2area 9 5 45S     

Displacement 45m  

c. during the first 13 seconds, the distance covered is 10 + 45 = 55m,

The area needed 3S 100 55 45  

So from 13s to 22 s, he covers S3 = 45 m. 

6. A constant resultant horizontal force of N acts on a car of mass 

900 kg, initially at rest on a level road. 

31.8 10

(a) Calculate 

(i) The acceleration of the car, 

Strategy: by the Newton’s second law, F ma , F
a

m


So 
3

21.8 10
2

900

F
a ms

m Kg


  
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(ii) The speed of the car after 8.0 s, 

Strategy: initial velocity, , 0u  8.0t s , 22a ms

v u at 
10 2 8 16v ms   

4 1900 16 1.44 10momentum mv kgms

. And from the equation: 

, gives 

 

(iii) The momentum of the car after 8.0 s, 

Strategy: The product of an object’s mass m and velocity v is called its 

momentum: 
      

(iv) The distance traveled by the car in the first 8.0 s of its motion, 

Strategy: 21

2
s ut at 

21
0 2 8 64

2
S m    

31.8 10 64 115.2W FS kJ    

 

(v) The work done by the resultant horizontal force during the first 8.0 s. 

Strategy: Work done=force × distance moved in direction of force. 

 

(b) On the axes below (Fig. 6.1) sketch the graphs for speed, v, and distance 

traveled, s, against time, t, for the first 8.0 s of the car’s motion. 

Strategy: for the first 8.0 s, the car is moving with constant acceleration, 

, so the gradient of the v—t graph is equal to 22a ms 22ms  

(c) In practice the resultant force on the car changes with time. Air resistance 

is one factor that affects the resultant force acting on the vehicle. 

You may be awarded marks for the quality of written communication in your 

answer. 
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(i) Suggest, with a reason, how the resultant force on the car changes as its 

speed increases. 

Answers: the resultant force decreases as its speed increases, because the air 

resistance increases as its speed increases, and the engine force of the car is 

constant, so the constant force decreases. 

(ii) Explain, using Newton’s laws of motion, why the vehicle has a maximum 

speed. 

As the velocity increases, the air resistance increases, so the resultant force 

decreases, which means the acceleration of the car decreases, but the velocity 

is still increasing till the resultant force is zero (acceleration of the car is zero), 

according to the Newton’s first law, then the vehicle has a maximum speed. 

7. Fig. 7.1 represents the motion of two cars, A and B, as they move along a

straight, horizontal road. 

Fig. 7.1 motion of two cars

(a) Describe the motion of each car as shown on the graph. 

 (i) Car A: is moving with constant speed 116ms

(ii) Car B: accelerates in the first 5 seconds, and then moving with constant 

speed . 118ms

(b) Calculate the distance traveled by each car during the first 5.0 s. 

(i) Car A: 

Strategy: car A moving with constant speed, so distance of car A,  
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So 16 5 80AS ut m   

(ii) Car B:  

Strategy: in the first 5 seconds, car B accelerates, and from the graph, the 

gradient of the v—t graph for B is18 14
0.8

5




20.8a ms

, that is the acceleration of B is 

 

So 2 21 1
14 5 0.8 5 80

2 2BS ut at m       

(c) At time t = 0, the two cars are level. Explain why car A is at its maximum 

distance ahead of B at t = 2.5 s 

Because car A is faster than car B at the first 2.5s, so for the first 2.5s, the 

distance between them increases till they have the same speed at 2.5s. After 

2.5s, car B is faster than car A, so the distance then decreases. So at the time 

2.5s, car A is at its maximum distance ahead of B. 

8. A car accelerates from rest to a speed of 26ms-1. Table 8.1 shows how the

speed of the car varies over the first 30 seconds of motion. 

Table 8.1 
Time/s 0 5.0 10.0 15.0 20.0 25.0 30.0 

Speed/ms-1 0 16.5 22.5 24.5 25.5 26.0 26.0 

(a) Draw a graph of speed against time on the grid provided (Fig. 8.1). 

Note: you must draw the right scales and the six points are correctly plotted, 

and it is a trend line not a straight line. 

http://www.mppe.org.uk

Copyright  © mppe.org.uk and its license. All Rights Reserved 



(b) Calculate the average acceleration of the car over the first 25 s. 

Strategy: 226
1.04

25

v
a ms

t


  


(c) Use your graph to estimate the distance traveled by the car in the first 25 

s. 

Strategy: area under the v—t graph represents the distance traveled. 

So from the graph, its distance is 510m 

(d) Using the axes below, sketch a graph to show how the resultant force 

acting on the car varies over the first 30 s of motion. 

Solution: 

From table 8.1, the rate of change of speed decreases to zero, thus the 

resultant force decreases to zero. As shown in Fig. 8.2. 

(e) Explain the shape of the graph you have sketched in part (d), with 

reference to the graph you plotted in part (a). 

 Because the first graph shows that the gradient of the car decreases, which 

means that the acceleration of the car decreases, and by the Newton’s second 

law, , the force, F, decreases, and as the acceleration is changing in 

the first 25s, so the force is also changing, so the graph of the force is not a 

straight line. 

F ma

9. A supertanker of mass , cruising at an initial speed of , 

takes one hour to come to rest. 

84.0 10 kg 4.5 /m s

(a) Assuming that the force slowing the tanker down is constant, calculate 

(i) The deceleration of the tanker, 

Solution: 
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The force slowing the tanker down is constant, so the tanker decelerates 

uniformly. Therefore, deceleration of the tanker is given by 

3 20 4.5 4.5
1.25 10 /

1 60 60
a m s

t
 

   
 

 

(ii) The distance travelled by the tanker while slowing to a stop. 

Solution: 

The average speed is given by 
0 4.5

2.25 /
2

v m s


   

So the distance traveled: 2.25 1 60 60 8100s vt m       

(b) Sketch, using the axes below, a distance-time graph representing the 

motion of the tanker until it stops. 

Time/s

Distance/m

Fig. 9.1 Distance—time graph

(c) Explain the shape of the graph you have sketched in part (b). 

Solution: 

Because the speed is decreasing, the gradient of the curve decreases in the 

distance-time graph. 

10. (a) A cheetah accelerating uniformly from rest reaches a speed of

in 2.0 s and then maintains this speed for 15 s. Calculate 29 /m s

(i) Its acceleration, 

Solution: 

Using 229 0
14.5 /

2

v u
a m s

t

 
  

(ii) The distance it travels while accelerating, 

Solution: 
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2 21 1
0 14.5 2 29

2 2
s ut at m      

29 15 435s vt m   

(iii) The distance it travels while it is moving at constant speed. 

Solution: 

 

(b) The cheetah and an antelope are both at rest and 100 m apart. The cheetah 

starts to chase the antelope. The antelope takes 0.50 s to react. It then 

accelerates uniformly for 2.0 s to a speed of and then maintains this 

speed. Fig. 10.1 shows the speed-time graph for the cheetah. 

25 /m s

(i) Using the same axes plot the speed-time graph for the antelope during the 

chase. 

Solution: 

The antelope takes 0.50 s to react and accelerates uniformly for 2.0 s to a 

speed of 25 m/s. thus we can get the speed-time graph beginning with 0.50 s. 

(ii) Calculate the distance covered by the antelope in the 17 s after the 

cheetah started to run. 

Solution: 

The antelope accelerates from rest, and reaches to a speed of 25 m/s in 2 s. 

then maintains this speed. Thus the distance is given by 

2 25 (17 2 0.5) 12.5 2 25 14.5 387.5
2

v u
s m


          

(iii) How far apart are the cheetah and the antelope after 17 s? 
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Solution: 

From (a), the distance of cheetah is 1 435 29 464s m  

1100 387.5 100 464 23.5

And at the beginning, they are 100 m apart. Thus  

s s s m       

11. Figure 11.1 shows a distance-time graphs for two runners, A and B, in a

100 m race. 

Fig. 11.1 distance—time graph for two runners

(a) Explain how the graph shows that athlete B accelerates throughout the 

race. 

Solution: 

The gradient is changing (increasing) 

(b) Estimate the maximum distance between the athletes. 

Solution: 

When B’s speed is the same as A’s, it has the maximum distance between the 

athletes. From the graph is the gradient of B curve is the same that of A. 

From the graph, the maximum distance is 25 m. 

(c) Calculate the speed of athlete A during the race. 

Solution: 

For A, it has a distance in time 11 s, thus  
tan 100

9.1 /
11

dis ce m
speed m s

time s
  

(d) The acceleration of athlete B is uniform for the duration of the race. 
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(i) State what is meant by uniform acceleration. 

(ii) Calculate the acceleration of athlete B. 

Solution: 

(i) The acceleration keeps the same or the velocity increases uniformly with 

time. 

(ii) For B, its initial velocity is u = 0 m/s, distance s = 100 m, time taken  

t = 11 s. 

Thus, using 2 21 1

2 2
s ut at at   , gives 

2
2 2

2 2 100
1.7 /

11

s
a m s

t


  

12.An aircraft accelerates horizontally from rest and takes off when its speed

is 82 m s-1. The mass of the aircraft is and its engines provide a 

constant thrust of . 

45.6 10 kg
51.9 10 N

(a) Calculate 

(i) The initial acceleration of the aircraft, 

Solution: 

(i) Initially, the resultant force , from Newton’s second law: 51.9 10F   N

F ma , we can get that 
5

2
4

1.9 10
3.4 /

5.6 10

F N
a m s

m kg


  


(ii) The minimum length of runway required, assuming the acceleration is 

constant. 

Solution: let the minimum length of the runway required L. thus  
2 2 2v u aL   

Therefore 
2 2 282 0

989
2 2 3.4

v u
L m

a

 
  



(b) In practice, the acceleration is unlikely to be constant. State a reason for 

this and explain what effect this will have on the minimum length of runway 

required. 

Solution: 

In practice, the air resistance increases with speed, hence the runway will be 

longer. 
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(c) After taking off, the aircraft climbs at an angle of 22° to the ground. The 

thrust from the engines remains at . Calculate 51.9 10 N

(i) The horizontal component of the thrust, 

(ii) The vertical component of the thrust. 

Solution: 

The thrust  51.9 10T N 

0 5
1 cos 22 1.76 10F T N  

0 5
2 sin 22 0.71 10F T N  

The horizontal component of the thrust is given by 

The vertical component of the thrust is given by 

13. Figure 13.1 shows how the velocity, v, of a car varies with time, t.

Fig. 13.1 velocity—time graph

(a) Describe the motion of the car for the 50 s period. 

You may be awarded additional marks to those shown in brackets for the 

quality of written communication in your answer. 

Solution: 

0—20 s: the car uniformly accelerates to a velocity of 15 m/s. 

20—40 s: the car moves with constant velocity 15 m/s. 

40—50 s: the car uniformly decelerates from a velocity of 15 m/s to 0 m/s. 
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(b) The mass of the car is 1200 kg. Calculate for the first 20 s of motion, (b) 

(i) the change in momentum of the car, 

(b) (ii) the rate of change of momentum, 

(b) (iii) the distance travelled. 

Solution: for the first 20 s of motion 

(i) At t = o s, the initial velocity is u = 0 m/s; at t = 20 s, the final velocity is v 

= 15 m/s. thus the change in momentum of the car is given by 

Therefore,  

 4(1200 ) 15 / 0 1.8 10 /p mv mu kg m s kg m s        

(ii) 
4

3 21.8 10 /
The rate of change of momentum 0.9 10 /

20

change in momentum kg m s
kg m s

time taken

 
    

(iii) The area under a velocity—time graph measures the displacement 

traveled. 

Thus the area for the first 20 s is given by  
1

20 15 150
2

A    

Therefore the distance traveled is 150 m. 

14. A car is travelling on a level road at a speed of 15.0 m s-1 towards a set of

traffic lights when the lights turn red. The driver applies the brakes  

0.5 s after seeing the lights turn red and stops the car at the traffic lights. 

Table 14.1 shows how the speed of the car changes from when the traffic 

lights turn red. 

Table 14.1 
Time/s 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

Speed/ms-1 15.0 15.0 12.5 10.0 7.5 5.0 2.5 0.0 

(a) Draw a graph of speed on the y-axis against time on the x-axis on the grid 

provided (Fig. 14.1). 
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(b) (i) State and explain what feature of the graph shows that the car’s 

deceleration was uniform. 

Solution: 

Deceleration is uniform because the graph is a decreasing straight line. And 

the gradient of the line represents the deceleration. 

(b) (ii) Use your graph to calculate the distance the car travelled after the 

lights turned red to when it stopped. 

Solution: 

Distance traveled = area under the line (0s to 3.5s). 
1

Area (0.5 3.5) 15 30
2

    

Therefore, distance traveled = 30 m. 

15. Galileo used an inclined plane, similar to the one shown in Fig. 15.1, to

investigate the motion of falling objects. 

(a) Explain why using an inclined plane rather than free fall would produce 

data which is valid when investigating the motion of a falling object. 

Solution: 

Freefall is too quick; Galileo had no accurate method to time freefall. 

(b) In a demonstration of Galileo’s investigation, the number of swings of a 

pendulum was used to time a trolley after it was released from rest. A block 

was positioned to mark the distance that the trolley had travelled after a 

chosen whole number of swings. 
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Fig. 15.1

The mass of the trolley in Fig. 15.1 is 0.20 kg and the slope is at an angle of 

1.8°to the horizontal. 

(b) (i) Show that the component of the weight acting along the slope is about 

0.06 N. 

Solution: 

The component of weight acting along the slope is given by 
0

1 sin1.8 0.2 9.81 0.031 0.06W W N    

(b) (ii) Calculate the initial acceleration down the slope. 

Solution: 

The initial resultant force along the slope equals to W1, thus 

21 0.06
0.3 /

0.2

W
a m s

m
  

(c) In this experiment, the following data was obtained. A graph of the data 

(Fig. 15.2) is shown below it. 
Time/pendulum swings Distance travelled/m 

1 0.29

2 1.22

3 2.70

4 4.85
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(c) From Fig. 15.2, state what you would conclude about the motion of the 

trolley? 

Give a reason for your answer. 

Solution: 

The gradient of the curve increases as time increasing. Thus the speed of the 

trolley is increasing. 

(d) Each complete pendulum swing had a period of 1.4 s. Use the 

distance-time graph above to find the speed of the trolley after it had 

travelled 3.0 m. 

Solution: 

From Fig. 15.2, the time taken for traveling 3.0 m is given by 
1.4

3 1.4 1.5 4.41
10

t s      
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And initial speed , thus 0 /u m s

2 2

u v vt
s t


   , gives 

2 2 3.0
Speed,  v  1.36 /

4.41

s m
m s

t s


  

0.2 5s V t V   

16. A steel ball of mass 0.15kg released from rest in a liquid, falls a distance

of 0.20m in 5.0s. Assuming the ball reaches terminal speed within a fraction 

of a second, calculate 

(i) Its terminal speed, 

(ii) The drag force on it when it falls at terminal speed. 

Strategy: as the ball reaches terminal speed within a fraction of a second, so 

the ball falls a distance of 0.20m in 5.0s with the constant terminal speed, let 

the terminal speed V. 

So (i)  

     V = 0.04 m s -1 

  (ii) When the ball falls at terminal speed, the drag force on it is equal and 

opposite to its weight. 

    So drag force, F = weight = mg = 0.15×9.8 = 1.47 N 
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17. Explain why a raindrop falling vertically through still air reaches a

constant velocity. 

Answers: Because as the falling of the raindrop, its speed is increasing; and 

the air resistance of the raindrop is increasing with the increasing speed, so 

the resultant force of the raindrop decreases, by the Newton’s second law, 
F ma , its acceleration decreases. So when the speed reaches to a certain 

value, the resultant force is equal to zero, then the raindrop reaches a constant 

velocity. 
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