Copyright © mppe.org.uk and its license. All Rights Reserved NOTICE TO CUSTOMER:

The sale of this product is intended for use of the original purchaser only and for use only on a single computer system. Duplicating, selling, or otherwise distributing this product is a violation of the law ; your license of the product will be terminated at any moment if you are selling or distributing the products.

No parts of this book may be reproduced, stored in a retrieval system, of transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

http://www.mppe.org.uk

mock papers 1

1 It is given that $f(x) = \frac{2ax}{(x-2a)(x^2+a^2)}$, where *a* is a non-zero constant. Express f(x) in partial fractions. [5]

The diagram shows the curve y = f(x). The curve has a maximum point at (0, 5) and crosses the *x*-axis at (-2, 0), (3, 0) and (4, 0). Sketch the curve $y^2 = f(x)$, showing clearly the coordinates of any turning points and of any points where this curve crosses the axes. [5]

3 By using the substitution $t = tan \frac{1}{2}x$, find the exact value of

$$\int_0^{\frac{1}{2}\pi} \frac{1}{2 - \cos x} \, \mathrm{d}x$$

giving the answer in terms of π .

- 4 (i) Sketch, on the same diagram, the curves with equations $y = \operatorname{sech} x$ and $y = x^2$. [3]
 - (ii) By using the definition of sech x in terms of e^x and e^{-x} , show that the x-coordinates of the points at which these curves meet are solutions of the equation

$$x^2 = \frac{2e^x}{e^{2x} + 1}.$$
 [3]

(iii) The iteration

 $x_{n+1} = \sqrt{\frac{2e^{x_n}}{e^{2x_n} + 1}}$

can be used to find the positive root of the equation in part (ii). With initial value $x_1 = 1$, the approximations $x_2 = 0.8050$, $x_3 = 0.8633$, $x_4 = 0.8463$ and $x_5 = 0.8513$ are obtained, correct to 4 decimal places. State with a reason whether, in this case, the iteration produces a 'staircase' or a 'cobweb' diagram. [2]

5 It is given that, for $n \ge 0$,

$$I_n = \int_0^{\frac{1}{4}\pi} \tan^n x \, \mathrm{d}x.$$

(i) By considering $I_n + I_{n-2}$, or otherwise, show that, for $n \ge 2$,

$$(n-1)(I_n + I_{n-2}) = 1.$$
 [4]

(ii) Find I_4 in terms of π .

Copyright © mppe.org.uk and its license. All Rights Reserved

[6]

[4]

- 6 It is given that $f(x) = 1 \frac{7}{x^2}$.
 - (i) Use the Newton-Raphson method, with a first approximation $x_1 = 2.5$, to find the next approximations x_2 and x_3 to a root of f(x) = 0. Give the answers correct to 6 decimal places. [3]
 - (ii) The root of f(x) = 0 for which x_1, x_2 and x_3 are approximations is denoted by α . Write down the exact value of α . [1]
 - (iii) The error e_n is defined by $e_n = \alpha x_n$. Find e_1, e_2 and e_3 , giving your answers correct to 5 decimal places. Verify that $e_3 \approx \frac{e_2^3}{e_1^2}$. [3]
- 7 It is given that $f(x) = \tanh^{-1}\left(\frac{1-x}{2+x}\right)$, for $x > -\frac{1}{2}$.

(i) Show that
$$f'(x) = -\frac{1}{1+2x}$$
, and find $f''(x)$. [6]

- (ii) Show that the first three terms of the Maclaurin series for f(x) can be written as $\ln a + bx + cx^2$, for constants *a*, *b* and *c* to be found. [4]
- 8 The equation of a curve, in polar coordinates, is

$$r = 1 - \sin 2\theta$$
, for $0 \le \theta < 2\pi$.

(i)

The diagram shows the part of the curve for which $0 \le \theta \le \alpha$, where $\theta = \alpha$ is the equation of the tangent to the curve at *O*. Find α in terms of π . [2]

- (ii) (a) If $f(\theta) = 1 \sin 2\theta$, show that $f(\frac{1}{2}(2k+1)\pi \theta) = f(\theta)$ for all θ , where k is an integer. [3]
 - (b) Hence state the equations of the lines of symmetry of the curve

$$r = 1 - \sin 2\theta$$
, for $0 \le \theta < 2\pi$. [2]

(iii) Sketch the curve with equation

$$r = 1 - \sin 2\theta$$
, for $0 \le \theta < 2\pi$.

State the maximum value of r and the corresponding values of θ . [4]

Copyright © mppe.org.uk and its license. All Rights Reserved

9 (i) Prove that
$$\int_{0}^{N} \ln(1+x) dx = (N+1) \ln(N+1) - N$$
, where N is a positive constant. [4]
(ii)
$$\int_{0}^{y} \frac{1}{12} \frac{1}{3} = \frac{1}{3} + \frac{1}{$$

The diagram shows the curve $y = \ln(1 + x)$, for $0 \le x \le 70$, together with a set of rectangles of unit width.

(a) By considering the areas of these rectangles, explain why

$$\ln 2 + \ln 3 + \ln 4 + \dots + \ln 70 < \int_0^{70} \ln(1+x) \, \mathrm{d}x.$$
 [2]

(b) By considering the areas of another set of rectangles, show that

$$\ln 2 + \ln 3 + \ln 4 + \dots + \ln 70 > \int_0^{69} \ln(1+x) \, \mathrm{d}x.$$
 [3]

(c) Hence find bounds between which ln(70!) lies. Give the answers correct to 1 decimal place. [3]

mock papers 2

3

- 1 It is given that $f(x) = x^2 \sin x$.
 - (i) The iteration $x_{n+1} = \sqrt{\sin x_n}$, with $x_1 = 0.875$, is to be used to find a real root, α , of the equation f(x) = 0. Find x_2 , x_3 and x_4 , giving the answers correct to 6 decimal places. [2]
 - (ii) The error e_n is defined by $e_n = \alpha x_n$. Given that $\alpha = 0.876726$, correct to 6 decimal places, find e_3 and e_4 . Given that $g(x) = \sqrt{\sin x}$, use e_3 and e_4 to estimate $g'(\alpha)$. [3]
- 2 It is given that $f(x) = \tan^{-1}(1+x)$.
 - (i) Find f(0) and f'(0), and show that $f''(0) = -\frac{1}{2}$. [4]
 - (ii) Hence find the Maclaurin series for f(x) up to and including the term in x^2 . [2]

A curve with no stationary points has equation y = f(x). The equation f(x) = 0 has one real root α , and the Newton-Raphson method is to be used to find α . The tangent to the curve at the point $(x_1, f(x_1))$ meets the *x*-axis where $x = x_2$ (see diagram).

(i) Show that
$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$
. [3]

- (ii) Describe briefly, with the help of a sketch, how the Newton-Raphson method, using an initial approximation $x = x_1$, gives a sequence of approximations approaching α . [2]
- (iii) Use the Newton-Raphson method, with a first approximation of 1, to find a second approximation to the root of $x^2 2 \sinh x + 2 = 0$. [2]
- 4 The equation of a curve, in polar coordinates, is

$$r = e^{-2\theta}$$
, for $0 \le \theta \le \pi$.

(i) Sketch the curve, stating the polar coordinates of the point at which *r* takes its greatest value.

[2]

(ii) The pole is *O* and points *P* and *Q*, with polar coordinates (r_1, θ_1) and (r_2, θ_2) respectively, lie on the curve. Given that $\theta_2 > \theta_1$, show that the area of the region enclosed by the curve and the lines *OP* and *OQ* can be expressed as $k(r_1^2 - r_2^2)$, where *k* is a constant to be found. [5]

Copyright © mppe.org.uk and its license. All Rights Reserved

1

5 (i) Using the definitions of $\sinh x$ and $\cosh x$ in terms of e^x and e^{-x} , show that

$$\cosh^2 x - \sinh^2 x \equiv 1.$$

Deduce that
$$1 - \tanh^2 x \equiv \operatorname{sech}^2 x$$
. [4]

(ii) Solve the equation $2 \tanh^2 x - \operatorname{sech} x = 1$, giving your answer(s) in logarithmic form. [4]

6 (i) Express
$$\frac{4}{(1-x)(1+x)(1+x^2)}$$
 in partial fractions. [5]

(ii) Show that
$$\int_{0}^{\frac{1}{\sqrt{3}}} \frac{4}{1-x^4} \, \mathrm{d}x = \ln\left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right) + \frac{1}{3}\pi.$$
 [4]

The diagram shows the curve with equation $y = \sqrt[3]{x}$, together with a set of *n* rectangles of unit width.

(i) By considering the areas of these rectangles, explain why

7

$$\sqrt[3]{1} + \sqrt[3]{2} + \sqrt[3]{3} + \ldots + \sqrt[3]{n} > \int_{0}^{n} \sqrt[3]{x} \, \mathrm{d}x.$$
 [2]

(ii) By drawing another set of rectangles and considering their areas, show that

$$\sqrt[3]{1} + \sqrt[3]{2} + \sqrt[3]{3} + \dots + \sqrt[3]{n} < \int_{1}^{n+1} \sqrt[3]{x} \, \mathrm{d}x.$$
 [3]

(iii) Hence find an approximation to $\sum_{n=1}^{100} \sqrt[3]{n}$, giving your answer correct to 2 significant figures. [3]

[Questions 8 and 9 are printed overleaf.]

Turn over

Copyright © mppe.org.uk and its license. All Rights Reserved

3

8 The equation of a curve is

$$y = \frac{kx}{(x-1)^2},$$

where *k* is a positive constant.

(i) Write down the equations of the asymptotes of the curve. [2]

(ii) Show that
$$y \ge -\frac{1}{4}k$$
. [4]

(iii) Show that the *x*-coordinate of the stationary point of the curve is independent of *k*, and sketch the curve. [4]

9 (i) Given that
$$y = \tanh^{-1} x$$
, for $-1 < x < 1$, prove that $y = \frac{1}{2} \ln\left(\frac{1+x}{1-x}\right)$. [3]

- (ii) It is given that $f(x) = a \cosh x b \sinh x$, where a and b are positive constants.
 - (a) Given that $b \ge a$, show that the curve with equation y = f(x) has no stationary points. [3]
 - (b) In the case where a > 1 and b = 1, show that f(x) has a minimum value of $\sqrt{a^2 1}$. [6]

mock papers 3

Express $\frac{2x+3}{(x+3)(x^2+9)}$ in partial fractions. 1

2 A curve has equation
$$y = \frac{x^2 - 6x - 5}{x - 2}$$
.

- [3] (i) Find the equations of the asymptotes.
- (ii) Show that y can take all real values.
- 3 It is given that $F(x) = 2 + \ln x$. The iteration $x_{n+1} = F(x_n)$ is to be used to find a root, α , of the equation $x = 2 + \ln x.$
 - (i) Taking $x_1 = 3.1$, find x_2 and x_3 , giving your answers correct to 5 decimal places. [2]
 - (ii) The error e_n is defined by $e_n = \alpha x_n$. Given that $\alpha = 3.14619$, correct to 5 decimal places, use the values of e_2 and e_3 to make an estimate of F'(α) correct to 3 decimal places. State the true value of $F'(\alpha)$ correct to 4 decimal places. [3]
 - (iii) Illustrate the iteration by drawing a sketch of y = x and y = F(x), showing how the values of x_{y} approach α . State whether the convergence is of the 'staircase' or 'cobweb' type. [3]
- A curve *C* has the cartesian equation $x^3 + y^3 = axy$, where $x \ge 0$, $y \ge 0$ and a > 0. 4
 - (i) Express the polar equation of C in the form $r = f(\theta)$ and state the limits between which θ lies. [3]

The line $\theta = \alpha$ is a line of symmetry of *C*.

- (ii) Find and simplify an expression for $f(\frac{1}{2}\pi \theta)$ and hence explain why $\alpha = \frac{1}{4}\pi$. [3]
- (iii) Find the value of r when $\theta = \frac{1}{4}\pi$. [1]
- (iv) Sketch the curve C. [2]

5 (i) Prove that, if
$$y = \sin^{-1} x$$
, then $\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}$. [3]

- (ii) Find the Maclaurin series for $\sin^{-1} x$, up to and including the term in x^3 . [5]
- (iii) Use the result of part (ii) and the Maclaurin series for $\ln(1 + x)$ to find the Maclaurin series for $(\sin^{-1} x) \ln(1 + x)$, up to and including the term in x^4 . [4]
- It is given that $I_n = \int_0^1 x^n (1-x)^{\frac{3}{2}} dx$, for $n \ge 0$. 6

(i) Show that
$$I_n = \frac{2n}{2n+5}I_{n-1}$$
, for $n \ge 1$. [6]

(ii) Hence find the exact value of I_3 .

Copyright [©] mppe.org.uk and its license. All Rights Reserved

1

[4]

[5]

[4]

7 (i) Sketch the graph of $y = \tanh x$ and state the value of the gradient when x = 0. On the same axes, sketch the graph of $y = \tanh^{-1} x$. Label each curve and give the equations of the asymptotes. [4]

(ii) Find
$$\int_0^k \tanh x \, dx$$
, where $k > 0$. [2]

(iii) Deduce, or show otherwise, that
$$\int_{0}^{\tanh k} \tanh^{-1} x \, dx = k \tanh k - \ln(\cosh k).$$
 [4]

8 (i) Use the substitution $x = \cosh^2 u$ to find $\int \sqrt{\frac{x}{x-1}} \, dx$, giving your answer in the form $f(x) + \ln(g(x))$. [7]

- (ii) Hence calculate the exact area of the region between the curve $y = \sqrt{\frac{x}{x-1}}$, the x-axis and the lines x = 1 and x = 4 (see diagram). [1]
- (iii) What can you say about the volume of the solid of revolution obtained when the region defined in part (ii) is rotated completely about the *x*-axis? Justify your answer. [3]

[4]

- 1
- 1 It is given that $f(x) = \ln(1 + \cos x)$.
 - (i) Find the exact values of f(0), f'(0) and f''(0).
 - (ii) Hence find the first two non-zero terms of the Maclaurin series for f(x). [2]

The diagram shows parts of the curves with equations $y = \cos^{-1} x$ and $y = \frac{1}{2} \sin^{-1} x$, and their point of intersection *P*.

- (i) Verify that the coordinates of *P* are $(\frac{1}{2}\sqrt{3}, \frac{1}{6}\pi)$. [2]
- (ii) Find the gradient of each curve at *P*.

3

The diagram shows the curve with equation $y = \sqrt{1 + x^3}$, for $2 \le x \le 3$. The region under the curve between these limits has area *A*.

(i) Explain why $3 < A < \sqrt{28}$.

[2]

[3]

(ii) The region is divided into 5 strips, each of width 0.2. By using suitable rectangles, find improved lower and upper bounds between which *A* lies. Give your answers correct to 3 significant figures.

[4]

Copyright © mppe.org.uk and its license. All Rights Reserved

- 2
- 4 The equation of a curve, in polar coordinates, is

$$r = 1 + 2 \sec \theta$$
, for $-\frac{1}{2}\pi < \theta < \frac{1}{2}\pi$.

- (i) Find the exact area of the region bounded by the curve and the lines $\theta = 0$ and $\theta = \frac{1}{6}\pi$. [5] [The result $\int \sec \theta \, d\theta = \ln |\sec \theta + \tan \theta|$ may be assumed.]
- (ii) Show that a cartesian equation of the curve is $(x-2)\sqrt{x^2+y^2} = x$. [3]

The diagram shows the curve with equation $y = xe^{-x} + 1$. The curve crosses the x-axis at $x = \alpha$.

(i) Use differentiation to show that the *x*-coordinate of the stationary point is 1. [2]

 α is to be found using the Newton-Raphson method, with $f(x) = xe^{-x} + 1$.

- (ii) Explain why this method will not converge to α if an initial approximation x_1 is chosen such that $x_1 > 1$. [2]
- (iii) Use this method, with a first approximation $x_1 = 0$, to find the next three approximations x_2, x_3 and x_4 . Find α , correct to 3 decimal places. [5]
- 6 The equation of a curve is $y = \frac{2x^2 11x 6}{x 1}$.
 - (i) Find the equations of the asymptotes of the curve. [3]
 - (ii) Show that *y* takes all real values.

[5]

[3]

[3]

7 It is given that, for integers $n \ge 1$,

$$I_n = \int_0^1 \frac{1}{(1+x^2)^n} \, \mathrm{d}x.$$

(i) Use integration by parts to show that
$$I_n = 2^{-n} + 2n \int_0^1 \frac{x^2}{(1+x^2)^{n+1}} dx.$$
 [3]

(ii) Show that
$$2nI_{n+1} = 2^{-n} + (2n-1)I_n$$
. [3]

- (iii) Find I_2 in terms of π .
- 8 (i) By using the definition of $\sinh x$ in terms of e^x and e^{-x} , show that

$$\sinh^3 x = \frac{1}{4} \sinh 3x - \frac{3}{4} \sinh x.$$
 [4]

(ii) Find the range of values of the constant k for which the equation

$$\sinh 3x = k \sinh x$$

has real solutions other than x = 0.

(iii) Given that k = 4, solve the equation in part (ii), giving the non-zero answers in logarithmic form. [3]

9 (i) Prove that
$$\frac{d}{dx}(\cosh^{-1}x) = \frac{1}{\sqrt{x^2 - 1}}$$
. [3]

(ii) Hence, or otherwise, find
$$\int \frac{1}{\sqrt{4x^2 - 1}} dx.$$
 [2]

(iii) By means of a suitable substitution, find $\int \sqrt{4x^2 - 1} \, dx$. [6]