Copyright © mppe.org.uk and its license. All Rights Reserved NOTICE TO CUSTOMER:

The sale of this product is intended for use of the original purchaser only and for use only on a single computer system. Duplicating, selling, or otherwise distributing this product is a violation of the law; your license of the product will be terminated at any moment if you are selling or distributing the products.

No parts of this book may be reproduced, stored in a retrieval system, of transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

1 It is given that $\mathrm{f}(x)=\frac{2 a x}{(x-2 a)\left(x^{2}+a^{2}\right)}$, where a is a non-zero constant. Express $\mathrm{f}(x)$ in partial fractions.

2

The diagram shows the curve $y=\mathrm{f}(x)$. The curve has a maximum point at $(0,5)$ and crosses the x-axis at $(-2,0),(3,0)$ and $(4,0)$. Sketch the curve $y^{2}=\mathrm{f}(x)$, showing clearly the coordinates of any turning points and of any points where this curve crosses the axes.

3 By using the substitution $t=\tan \frac{1}{2} x$, find the exact value of

$$
\int_{0}^{\frac{1}{2} \pi} \frac{1}{2-\cos x} \mathrm{~d} x
$$

giving the answer in terms of π.

4 (i) Sketch, on the same diagram, the curves with equations $y=\operatorname{sech} x$ and $y=x^{2}$.
(ii) By using the definition of $\operatorname{sech} x$ in terms of e^{x} and e^{-x}, show that the x-coordinates of the points at which these curves meet are solutions of the equation

$$
\begin{equation*}
x^{2}=\frac{2 \mathrm{e}^{x}}{\mathrm{e}^{2 x}+1} \tag{3}
\end{equation*}
$$

(iii) The iteration

$$
x_{n+1}=\sqrt{\frac{2 \mathrm{e}^{x_{n}}}{\mathrm{e}^{2 x_{n}}+1}}
$$

can be used to find the positive root of the equation in part (ii). With initial value $x_{1}=1$, the approximations $x_{2}=0.8050, x_{3}=0.8633, x_{4}=0.8463$ and $x_{5}=0.8513$ are obtained, correct to 4 decimal places. State with a reason whether, in this case, the iteration produces a 'staircase' or a 'cobweb' diagram.

5 It is given that, for $n \geqslant 0$,

$$
I_{n}=\int_{0}^{\frac{1}{4} \pi} \tan ^{n} x \mathrm{~d} x
$$

(i) By considering $I_{n}+I_{n-2}$, or otherwise, show that, for $n \geqslant 2$,

$$
\begin{equation*}
(n-1)\left(I_{n}+I_{n-2}\right)=1 \tag{4}
\end{equation*}
$$

(ii) Find I_{4} in terms of π.

6 It is given that $\mathrm{f}(x)=1-\frac{7}{x^{2}}$.
(i) Use the Newton-Raphson method, with a first approximation $x_{1}=2.5$, to find the next approximations x_{2} and x_{3} to a root of $\mathrm{f}(x)=0$. Give the answers correct to 6 decimal places. [3]
(ii) The root of $\mathrm{f}(x)=0$ for which x_{1}, x_{2} and x_{3} are approximations is denoted by α. Write down the exact value of α.
(iii) The error e_{n} is defined by $e_{n}=\alpha-x_{n}$. Find e_{1}, e_{2} and e_{3}, giving your answers correct to 5 decimal places. Verify that $e_{3} \approx \frac{e_{2}^{3}}{e_{1}^{2}}$.

7 It is given that $\mathrm{f}(x)=\tanh ^{-1}\left(\frac{1-x}{2+x}\right)$, for $x>-\frac{1}{2}$.
(i) Show that $\mathrm{f}^{\prime}(x)=-\frac{1}{1+2 x}$, and find $\mathrm{f}^{\prime \prime}(x)$.
(ii) Show that the first three terms of the Maclaurin series for $\mathrm{f}(x)$ can be written as $\ln a+b x+c x^{2}$, for constants a, b and c to be found.

8 The equation of a curve, in polar coordinates, is

$$
r=1-\sin 2 \theta, \quad \text { for } 0 \leqslant \theta<2 \pi
$$

(i)

The diagram shows the part of the curve for which $0 \leqslant \theta \leqslant \alpha$, where $\theta=\alpha$ is the equation of the tangent to the curve at O. Find α in terms of π.
(ii) (a) If $\mathrm{f}(\theta)=1-\sin 2 \theta$, show that $\mathrm{f}\left(\frac{1}{2}(2 k+1) \pi-\theta\right)=\mathrm{f}(\theta)$ for all θ, where k is an integer. [3]
(b) Hence state the equations of the lines of symmetry of the curve

$$
\begin{equation*}
r=1-\sin 2 \theta, \quad \text { for } 0 \leqslant \theta<2 \pi \tag{2}
\end{equation*}
$$

(iii) Sketch the curve with equation

$$
\begin{equation*}
r=1-\sin 2 \theta, \quad \text { for } 0 \leqslant \theta<2 \pi \tag{4}
\end{equation*}
$$

State the maximum value of r and the corresponding values of θ.

9
(i) Prove that $\int_{0}^{N} \ln (1+x) \mathrm{d} x=(N+1) \ln (N+1)-N$, where N is a positive constant.
(ii)

The diagram shows the curve $y=\ln (1+x)$, for $0 \leqslant x \leqslant 70$, together with a set of rectangles of unit width.
(a) By considering the areas of these rectangles, explain why

$$
\begin{equation*}
\ln 2+\ln 3+\ln 4+\ldots+\ln 70<\int_{0}^{70} \ln (1+x) \mathrm{d} x . \tag{2}
\end{equation*}
$$

(b) By considering the areas of another set of rectangles, show that

$$
\begin{equation*}
\ln 2+\ln 3+\ln 4+\ldots+\ln 70>\int_{0}^{69} \ln (1+x) \mathrm{d} x \tag{3}
\end{equation*}
$$

(c) Hence find bounds between which $\ln (70!)$ lies. Give the answers correct to 1 decimal place.

1 It is given that $\mathrm{f}(x)=x^{2}-\sin x$.
(i) The iteration $x_{n+1}=\sqrt{\sin x_{n}}$, with $x_{1}=0.875$, is to be used to find a real root, α, of the equation $\mathrm{f}(x)=0$. Find x_{2}, x_{3} and x_{4}, giving the answers correct to 6 decimal places.
(ii) The error e_{n} is defined by $e_{n}=\alpha-x_{n}$. Given that $\alpha=0.876726$, correct to 6 decimal places, find e_{3} and e_{4}. Given that $\mathrm{g}(x)=\sqrt{\sin x}$, use e_{3} and e_{4} to estimate $\mathrm{g}^{\prime}(\alpha)$.

2 It is given that $\mathrm{f}(x)=\tan ^{-1}(1+x)$.
(i) Find $f(0)$ and $f^{\prime}(0)$, and show that $f^{\prime \prime}(0)=-\frac{1}{2}$.
(ii) Hence find the Maclaurin series for $\mathrm{f}(x)$ up to and including the term in x^{2}.

A curve with no stationary points has equation $y=\mathrm{f}(x)$. The equation $\mathrm{f}(x)=0$ has one real root α, and the Newton-Raphson method is to be used to find α. The tangent to the curve at the point $\left(x_{1}, \mathrm{f}\left(x_{1}\right)\right)$ meets the x-axis where $x=x_{2}$ (see diagram).
(i) Show that $x_{2}=x_{1}-\frac{\mathrm{f}\left(x_{1}\right)}{\mathrm{f}^{\prime}\left(x_{1}\right)}$.
(ii) Describe briefly, with the help of a sketch, how the Newton-Raphson method, using an initial approximation $x=x_{1}$, gives a sequence of approximations approaching α.
(iii) Use the Newton-Raphson method, with a first approximation of 1, to find a second approximation to the root of $x^{2}-2 \sinh x+2=0$.

4 The equation of a curve, in polar coordinates, is

$$
r=\mathrm{e}^{-2 \theta}, \quad \text { for } 0 \leqslant \theta \leqslant \pi
$$

(i) Sketch the curve, stating the polar coordinates of the point at which r takes its greatest value.
(ii) The pole is O and points P and Q, with polar coordinates $\left(r_{1}, \theta_{1}\right)$ and $\left(r_{2}, \theta_{2}\right)$ respectively, lie on the curve. Given that $\theta_{2}>\theta_{1}$, show that the area of the region enclosed by the curve and the lines $O P$ and $O Q$ can be expressed as $k\left(r_{1}^{2}-r_{2}^{2}\right)$, where k is a constant to be found.
(i) Using the definitions of $\sinh x$ and $\cosh x$ in terms of e^{x} and e^{-x}, show that

$$
\begin{equation*}
\cosh ^{2} x-\sinh ^{2} x \equiv 1 \tag{4}
\end{equation*}
$$

Deduce that $1-\tanh ^{2} x \equiv \operatorname{sech}^{2} x$.
(ii) Solve the equation $2 \tanh ^{2} x-\operatorname{sech} x=1$, giving your answer(s) in logarithmic form.

6 (i) Express $\frac{4}{(1-x)(1+x)\left(1+x^{2}\right)}$ in partial fractions.
(ii) Show that $\int_{0}^{\frac{1}{\sqrt{3}}} \frac{4}{1-x^{4}} \mathrm{~d} x=\ln \left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right)+\frac{1}{3} \pi$.

7

The diagram shows the curve with equation $y=\sqrt[3]{x}$, together with a set of n rectangles of unit width.
(i) By considering the areas of these rectangles, explain why

$$
\begin{equation*}
\sqrt[3]{1}+\sqrt[3]{2}+\sqrt[3]{3}+\ldots+\sqrt[3]{n}>\int_{0}^{n} \sqrt[3]{x} \mathrm{~d} x \tag{2}
\end{equation*}
$$

(ii) By drawing another set of rectangles and considering their areas, show that

$$
\begin{equation*}
\sqrt[3]{1}+\sqrt[3]{2}+\sqrt[3]{3}+\ldots+\sqrt[3]{n}<\int_{1}^{n+1} \sqrt[3]{x} \mathrm{~d} x \tag{3}
\end{equation*}
$$

(iii) Hence find an approximation to $\sum_{n=1}^{100} \sqrt[3]{n}$, giving your answer correct to 2 significant figures.

[Questions 8 and 9 are printed overleaf.]

8 The equation of a curve is

$$
y=\frac{k x}{(x-1)^{2}}
$$

where k is a positive constant.
(i) Write down the equations of the asymptotes of the curve.
(ii) Show that $y \geqslant-\frac{1}{4} k$.
(iii) Show that the x-coordinate of the stationary point of the curve is independent of k, and sketch the curve.

9 (i) Given that $y=\tanh ^{-1} x$, for $-1<x<1$, prove that $y=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$.
(ii) It is given that $\mathrm{f}(x)=a \cosh x-b \sinh x$, where a and b are positive constants.
(a) Given that $b \geqslant a$, show that the curve with equation $y=\mathrm{f}(x)$ has no stationary points.
(b) In the case where $a>1$ and $b=1$, show that $\mathrm{f}(x)$ has a minimum value of $\sqrt{a^{2}-1}$.

1 Express $\frac{2 x+3}{(x+3)\left(x^{2}+9\right)}$ in partial fractions.

2 A curve has equation $y=\frac{x^{2}-6 x-5}{x-2}$.
(i) Find the equations of the asymptotes.
(ii) Show that y can take all real values.

3 It is given that $\mathrm{F}(x)=2+\ln x$. The iteration $x_{n+1}=\mathrm{F}\left(x_{n}\right)$ is to be used to find a root, α, of the equation $x=2+\ln x$.
(i) Taking $x_{1}=3.1$, find x_{2} and x_{3}, giving your answers correct to 5 decimal places.
(ii) The error e_{n} is defined by $e_{n}=\alpha-x_{n}$. Given that $\alpha=3.14619$, correct to 5 decimal places, use the values of e_{2} and e_{3} to make an estimate of $\mathrm{F}^{\prime}(\alpha)$ correct to 3 decimal places. State the true value of $\mathrm{F}^{\prime}(\alpha)$ correct to 4 decimal places.
(iii) Illustrate the iteration by drawing a sketch of $y=x$ and $y=\mathrm{F}(x)$, showing how the values of x_{n} approach α. State whether the convergence is of the 'staircase' or 'cobweb' type.

4 A curve C has the cartesian equation $x^{3}+y^{3}=a x y$, where $x \geqslant 0, y \geqslant 0$ and $a>0$.
(i) Express the polar equation of C in the form $r=\mathrm{f}(\theta)$ and state the limits between which θ lies.

The line $\theta=\alpha$ is a line of symmetry of C.
(ii) Find and simplify an expression for $f\left(\frac{1}{2} \pi-\theta\right)$ and hence explain why $\alpha=\frac{1}{4} \pi$.
(iii) Find the value of r when $\theta=\frac{1}{4} \pi$.
(iv) Sketch the curve C.

5 (i) Prove that, if $y=\sin ^{-1} x$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\sqrt{1-x^{2}}}$.
(ii) Find the Maclaurin series for $\sin ^{-1} x$, up to and including the term in x^{3}.
(iii) Use the result of part (ii) and the Maclaurin series for $\ln (1+x)$ to find the Maclaurin series for $\left(\sin ^{-1} x\right) \ln (1+x)$, up to and including the term in x^{4}.

6 It is given that $I_{n}=\int_{0}^{1} x^{n}(1-x)^{\frac{3}{2}} \mathrm{~d} x$, for $n \geqslant 0$.
(i) Show that $I_{n}=\frac{2 n}{2 n+5} I_{n-1}$, for $n \geqslant 1$.
(ii) Hence find the exact value of I_{3}.
(i) Sketch the graph of $y=\tanh x$ and state the value of the gradient when $x=0$. On the same axes, sketch the graph of $y=\tanh ^{-1} x$. Label each curve and give the equations of the asymptotes.
(ii) Find $\int_{0}^{k} \tanh x \mathrm{~d} x$, where $k>0$.
[2]
(iii) Deduce, or show otherwise, that $\int_{0}^{\tanh k} \tanh ^{-1} x \mathrm{~d} x=k \tanh k-\ln (\cosh k)$.

8 (i) Use the substitution $x=\cosh ^{2} u$ to find $\int \sqrt{\frac{x}{x-1}} \mathrm{~d} x$, giving your answer in the form $\mathrm{f}(x)+\ln (\mathrm{g}(x))$.

(ii) Hence calculate the exact area of the region between the curve $y=\sqrt{\frac{x}{x-1}}$, the x-axis and the lines $x=1$ and $x=4$ (see diagram).
(iii) What can you say about the volume of the solid of revolution obtained when the region defined in part (ii) is rotated completely about the x-axis? Justify your answer.

1 It is given that $\mathrm{f}(x)=\ln (1+\cos x)$.
(i) Find the exact values of $f(0), f^{\prime}(0)$ and $f^{\prime \prime}(0)$.
(ii) Hence find the first two non-zero terms of the Maclaurin series for $\mathrm{f}(x)$.

The diagram shows parts of the curves with equations $y=\cos ^{-1} x$ and $y=\frac{1}{2} \sin ^{-1} x$, and their point of intersection P.
(i) Verify that the coordinates of P are $\left(\frac{1}{2} \sqrt{3}, \frac{1}{6} \pi\right)$.
(ii) Find the gradient of each curve at P.

3

The diagram shows the curve with equation $y=\sqrt{1+x^{3}}$, for $2 \leqslant x \leqslant 3$. The region under the curve between these limits has area A.
(i) Explain why $3<A<\sqrt{28}$.
(ii) The region is divided into 5 strips, each of width 0.2 . By using suitable rectangles, find improved lower and upper bounds between which A lies. Give your answers correct to 3 significant figures.

4
The equation of a curve, in polar coordinates, is

$$
r=1+2 \sec \theta, \quad \text { for }-\frac{1}{2} \pi<\theta<\frac{1}{2} \pi \text {. }
$$

(i) Find the exact area of the region bounded by the curve and the lines $\theta=0$ and $\theta=\frac{1}{6} \pi$.
[The result $\int \sec \theta \mathrm{d} \theta=\ln |\sec \theta+\tan \theta|$ may be assumed.]
(ii) Show that a cartesian equation of the curve is $(x-2) \sqrt{x^{2}+y^{2}}=x$.

The diagram shows the curve with equation $y=x \mathrm{e}^{-x}+1$. The curve crosses the x-axis at $x=\alpha$.
(i) Use differentiation to show that the x-coordinate of the stationary point is 1 .
α is to be found using the Newton-Raphson method, with $\mathrm{f}(x)=x \mathrm{e}^{-x}+1$.
(ii) Explain why this method will not converge to α if an initial approximation x_{1} is chosen such that $x_{1}>1$.
(iii) Use this method, with a first approximation $x_{1}=0$, to find the next three approximations x_{2}, x_{3} and x_{4}. Find α, correct to 3 decimal places.

6 The equation of a curve is $y=\frac{2 x^{2}-11 x-6}{x-1}$.
(i) Find the equations of the asymptotes of the curve.
(ii) Show that y takes all real values.

7 It is given that, for integers $n \geqslant 1$,

$$
I_{n}=\int_{0}^{1} \frac{1}{\left(1+x^{2}\right)^{n}} \mathrm{~d} x
$$

(i) Use integration by parts to show that $I_{n}=2^{-n}+2 n \int_{0}^{1} \frac{x^{2}}{\left(1+x^{2}\right)^{n+1}} \mathrm{~d} x$.
(ii) Show that $2 n I_{n+1}=2^{-n}+(2 n-1) I_{n}$.
(iii) Find I_{2} in terms of π.

8 (i) By using the definition of $\sinh x$ in terms of e^{x} and e^{-x}, show that

$$
\begin{equation*}
\sinh ^{3} x=\frac{1}{4} \sinh 3 x-\frac{3}{4} \sinh x \tag{4}
\end{equation*}
$$

(ii) Find the range of values of the constant k for which the equation

$$
\sinh 3 x=k \sinh x
$$

has real solutions other than $x=0$.
(iii) Given that $k=4$, solve the equation in part (ii), giving the non-zero answers in logarithmic form.

9
(i) Prove that $\frac{\mathrm{d}}{\mathrm{d} x}\left(\cosh ^{-1} x\right)=\frac{1}{\sqrt{x^{2}-1}}$.
(ii) Hence, or otherwise, find $\int \frac{1}{\sqrt{4 x^{2}-1}} \mathrm{~d} x$.
(iii) By means of a suitable substitution, find $\int \sqrt{4 x^{2}-1} \mathrm{~d} x$.

