NOTICE TO CUSTOMER:

The sale of this product is intended for use of the original purchaser only and for use only on a single computer system. Duplicating, selling, or otherwise distributing this product is a violation of the law; your license of the product will be terminated at any moment if you are selling or distributing the products.

No parts of this book may be reproduced, stored in a retrieval system, of transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

		Answer all questions in the spaces provided.				
1		The rate of hydrolysis of an ester \mathbf{X} (HCOOCH ₂ CH ₂ CH ₃) was studied in alkaline conditions at a given temperature. The rate was found to be first order with respect to the ester and first order with respect to hydroxide ions.				
1	(a) (i)	Name ester X.				
		(1 mark)				
1	(a) (ii)	Using X to represent the ester, write a rate equation for this hydrolysis reaction.				
		(1 mark)				
1	(a) (iii)	When the initial concentration of X was $0.024 \text{ mol dm}^{-3}$ and the initial concentration of hydroxide ions was $0.035 \text{ mol dm}^{-3}$, the initial rate of the reaction was $8.5 \times 10^{-5} \text{ mol dm}^{-3} \text{ s}^{-1}$. Calculate a value for the rate constant at this temperature and give its units.				
		Calculation				
		Units				
1	(a) (iv)	(3 marks) In a second experiment at the same temperature, water was added to the original reaction mixture so that the total volume was doubled. Calculate the initial rate of reaction in this second experiment.				
		(1 mark)				

1 (a) (v)	In a third experiment at the same temperature, the concentration of X was half that used in the experiment in part 1 (a) (iii) and the concentration of hydroxide ions was three times the original value. Calculate the initial rate of reaction in this third experiment.
	(1 mark)
1 (a) (vi)	State the effect, if any, on the value of the rate constant k when the temperature is lowered but all other conditions are kept constant. Explain your answer.
	Effect
	Explanation
	(2 marks)
1 (b)	Compound A reacts with compound B as shown by the overall equation
	$A + 3B \rightarrow AB_3$
	The rate equation for the reaction is
	$rate = k[A][B]^2$
	A suggested mechanism for the reaction is
	Step 1 A + B \rightarrow AB
	Step 2 AB + B \rightarrow AB ₂
	Step 3 $AB_2 + B \rightarrow AB_3$
	Deduce which one of the three steps is the rate-determining step. Explain your answer.
	Rate-determining step
	Explanation
	(2 marks)

11

(1 mark)
(1 mark)
ochloric
(2 marks)
(1 marks)
(4 marks)

2 (c)	Explain why the pH of an acidic buffer solution remains almost constant despite the addition of a small amount of sodium hydroxide.				
	(2 marks)				
2 (d)	The acid dissociation constant, K_a , for the weak acid HY has the value 1.35 x 10^{-5} mol dm ⁻³ at 25 °C.				
	A buffer solution was prepared by dissolving 0.0236 mol of the salt NaY in $50.0\mathrm{cm^3}$ of a $0.428\mathrm{moldm^{-3}}$ solution of the weak acid HY				
2 (d) (i)	Calculate the pH of this buffer solution.				
	(4 marks)				

2 (d) (ii)	A 5.00 x 10 ⁻⁴ mol sample of sodium hydroxide was added to this buffer solution.	
	Calculate the pH of the buffer solution after the sodium hydroxide was added.	
	(4 marks)	
		18
	Turn over for the next question	

3		Synthesis gas is a mixture of carbon monoxide and hydrogen. Methanol can be manufactured from synthesis gas in a reversible reaction as shown by the following equation.				
		$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ $\Delta H^{\oplus} = -91 \text{ kJ mol}^{-1}$				
3	(a)	A sample of synthesis gas containing 0.240 mol of carbon monoxide and 0.380 mol of hydrogen was sealed together with a catalyst in a container of volume $1.50\mathrm{dm}^3$. When equilibrium was established at temperature T_1 the equilibrium mixture contained 0.170 mol of carbon monoxide.				
		Calculate the amount, in moles, of methanol and the amount, in moles, of hydrogen in the equilibrium mixture.				
		Methanol				
		Hydrogen(2 marks)				
3	(b)	A different sample of synthesis gas was allowed to reach equilibrium in a similar container of volume $1.50\mathrm{dm}^3$ at temperature T_1				
		At equilibrium, the mixture contained 0.210 mol of carbon monoxide, 0.275 mol of hydrogen and 0.0820 mol of methanol.				
3	(b) (i)	Write an expression for the equilibrium constant K_c for this reaction.				
		(1 mark)				
3	(b) (ii)	Calculate a value for K_c for the reaction at temperature T_1 and state its units.				
		Calculation				
		Units				
		(4 marks)				
3	(b) (iii)	State the effect, if any, on the value of K_c of adding more hydrogen to the equilibrium mixture.				
		(1 mark)				

3 (c)	The temperature of the mixture in part 3 (b) was changed to T_2 and the mixture was left to reach a new equilibrium position. At this new temperature the equilibrium concentration of methanol had increased. Deduce which of T_1 or T_2 is the higher temperature and explain your answer.
	Higher temperature
	Explanation
	(3 marks)
3 (d)	The following reaction has been suggested as an alternative method for the production of methanol.
	$CO_2(g) + 3H_2(g)$ \longrightarrow $CH_3OH(g) + H_2O(g)$
	The hydrogen used in this method is obtained from the electrolysis of water.
	Suggest one possible environmental disadvantage of the production of hydrogen by electrolysis.
	(1 mark)
3 (e)	One industrial use of methanol is in the production of biodiesel from vegetable oils such as
	CH ₂ OOCC ₁₇ H ₃₅
	CHOOCC ₁₇ H ₃₁
	CHOOCC ₁₇ H ₃₁ CH ₂ OOCC ₁₇ H ₂₉
	Give the formula of one compound in biodiesel that is formed by the reaction of methanol with the vegetable oil shown above.
	(1 mark)

4 (a)	Name compound Y , HOCH ₂ CH ₂ COOH			
4 (b) 4 (b) (i)	(1 mark) Under suitable conditions, molecules of Y can react with each other to form a polymer. Draw a section of the polymer showing two repeating units.			
4 (b) (ii)	(1 mark) Name the type of polymerisation involved.			
	(1 mark)			
4 (c)	When Y is heated, an elimination reaction occurs in which one molecule of Y loses one molecule of water. The organic product formed by this reaction has an absorption at 1637 cm ⁻¹ in its infrared spectrum.			
4 (c) (i)	Identify the bond that causes the absorption at 1637 cm ⁻¹ in its infrared spectrum.			
	(1 mark)			
4 (c) (ii)	Write the displayed formula for the organic product of this elimination reaction.			
4 (c) (iii)	The organic product from part 4 (c) (ii) can also be polymerised. Draw the repeating unit of the polymer formed from this organic product.			
	(1 mark)			

4 (d)	At room temperature, 2-aminobutanoic acid exists as a solid
	Draw the structure of the species present in the solid form.

(1 mark)

4 (e) The amino acid, glutamic acid, is shown below.

$$\begin{array}{c} \mathsf{COOH} \\ | \\ \mathsf{H_2N-C-CH_2-CH_2-COOH} \\ | \\ \mathsf{H} \end{array}$$

Draw the structure of the organic species formed when glutamic acid reacts with each of the following.

4 (e) (i) an excess of sodium hydroxide

(1 mark)

4 (e) (ii) an excess of methanol in the presence of concentrated sulfuric acid

(1 mark)

4 (e) (iii) ethanoyl chloride

(1 mark)

Question 4 continues on the next page

 	 •••••	•••••	
 	 		(3 mari
			(1)

(1 mark)

5	Atenolol is an example of the type of medicine called a beta blocker. These medicines
	are used to lower blood pressure by slowing the heart rate. The structure of atenolol
	is shown below.

$$\begin{array}{c|c}
 & OH & H \\
 & CH_3 \\
 & P & CH_2 \\
 & P & CH_2 \\
 & P & CH_2 \\
 & P & CH_3 \\
 & P & CH_2 \\
 & P & CH_3 \\
 & P & P & P \\$$

	J	
5 (a)	Give the name of each of the circled functional groups labelled ${\bf J}$ and ${\bf K}$ on the of atenolol shown above.	e structure
	Functional group labelled J	
	Functional group labelled K	(2 marks)
5 (b)	The ¹ H n.m.r. spectrum of atenolol was recorded.	
	One of the peaks in the 1 H n.m.r. spectrum is produced by the CH $_2$ group la the structure of atenolol. Use Table 2 on the Data Sheet to suggest a range of δ values for this peak. Name the splitting pattern of this peak.	
	Range of δ values	
	Name of splitting pattern	(2 marks)
5 (c)	N.m.r. spectra are recorded using samples in solution. The ¹ H n.m.r. spectrum was recorded using a solution of atenolol in CDCl ₃	
5 (c) (i)	Suggest why CDCl ₃ and not CHCl ₃ was used as the solvent.	
		(1 mark)
5 (c) (ii)	Suggest why $CDCl_3$ is a more effective solvent than CCl_4 for polar molecules at enolol.	s such as

5 (d) The ¹³C n.m.r. spectrum of atenolol was also recorded.

Use the structure of atenolol given to deduce the total number of peaks in the ¹³C n.m.r. spectrum of atenolol.

(1 mark)

5 (e) Part of the ¹³C n.m.r. spectrum of atenolol is shown below. Use this spectrum and **Table 3** on the Data Sheet, where appropriate, to answer the questions which follow.

5 (e) (i) Give the formula of the compound that is used as a standard and produces the peak at $\delta = 0$ ppm in the spectrum.

/A was at l

(1 mark)

5 (e) (ii) One of the peaks in the 13 C n.m.r. spectrum above is produced by the CH₃ group labelled q in the structure of atenolol. Identify this peak in the spectrum by stating its δ value.

(1 mark)

5 (e) (iii) There are three CH_2 groups in the structure of atenolol. One of these CH_2 groups produces the peak at δ = 71 in the ¹³C n.m.r. spectrum above. Draw a circle around this CH_2 group in the structure of atenolol shown below.

(1 mark)

Question 5 continues on the next page

5	(f)		Atenolol is produced industrially as a racemate (an equimolar mixture of two enantiomers) by reduction of a ketone. Both enantiomers are able to lower blood pressure. However, recent research has shown that one enantiomer is preferred in medicines.
5	(f)	(i)	Suggest a reducing agent that could reduce a ketone to form atenolol.
			(1 mark)
5	(f)	(ii)	Draw a circle around the asymmetric carbon atom in the structure of atenolol shown below.
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
5	(f)	(iii)	Suggest how you could show that the atenolol produced by reduction of a ketone was a racemate and not a single enantiomer.
			(2 marks)
5	(f)	(iv)	Suggest one advantage and one disadvantage of using a racemate rather than a single enantiomer in medicines.
			Advantage
			Disadvantage
			(2 marks)

	Answer all questions in the spaces provided.
6	Many synthetic routes need chemists to increase the number of carbon atoms in a molecule by forming new carbon–carbon bonds. This can be achieved in several ways including
	 reaction of an aromatic compound with an acyl chloride reaction of an aldehyde with hydrogen cyanide.
6 (a)	Consider the reaction of benzene with CH ₃ CH ₂ COCl
6 (a) (i)	Write an equation for this reaction and name the organic product. Identify the catalyst required in this reaction. Write equations to show how the catalyst is used to form a reactive intermediate and how the catalyst is reformed at the end of the reaction.
	(5 marks)
	(Extra space)

6 (a) (ii)	Name and outline a mechanism for the reaction of benzene with this reactive intermediate.
	(4 marks)
	(Extra space)
	Question 6 continues on the next page

6 (b)	Consider the reaction of propanal with HCN
6 (b) (i)	Write an equation for the reaction of propanal with HCN and name the product.
	(2 marks) (Extra space)
6 (b) (ii)	Name and outline a mechanism for the reaction of propanal with HCN
	/E montes
	(5 marks) (Extra space)

The rate-determining step in the mechanism in part 6 (b) (ii) involves attack by the nucleophile. Suggest how the rate of reaction of propanone with HCN would compare with the rate of reaction of propanal with HCN Explain your answer.	
(2 marks)	<u> </u>
Turn over for the next question	
	Suggest how the rate of reaction of propanone with HCN would compare with the rate of reaction of propanal with HCN Explain your answer.

7	The compound $(CH_3CH_2)_2NH$ can be made from ethene in a three-step synthesis as shown below.
	ethene $\xrightarrow{\text{Step 1}}$ F $\xrightarrow{\text{Step 2}}$ G $\xrightarrow{\text{Step 3}}$ (CH ₃ CH ₂) ₂ NH
7 (a)	Name the compound (CH ₃ CH ₂) ₂ NH
	(1 mark)
7 (b)	Identify compounds F and G .
	Compound F
	Compound G
	(2 marks)
7 (c)	For the reactions in Steps 1, 2 and 3,
	give a reagent or reagentsname the mechanism.
	Balanced equations and mechanisms using curly arrows are not required.
	(6 marks)
	(Extra space)

7 (d)	Identify one organic impurity in the product of Step 3 and give a reason for its formation.	
	(2 marks)	
	(Extra space)	_
	END OF QUESTIONS	

160 - 185

esters or

aldehydes or ketones

110 - 160

110 - 125

90 - 150

50 - 90

alcohols, ethers or

esters

25-60

¹³C n.m.r. chemical shift data

%/ppm

5 - 40

10-70

20 - 50

¹H n.m.r. chemical shift data Table 2

Wavenumber

Bond

Infrared absorption data

Table 1

/cm⁻¹

3300 - 3500

2850-3300 2500-3000

 $\mathsf{C}\mathsf{-H}$

3230-3550

O-H (alcohols)

(amines)

Type of proton	%/ppm	Type of carbon
ROH	0.5-5.0	 -c
RCH ₃	0.7 – 1.2)—)—
RNH_2	1.0-4.5	(- (
R_2CH_2	1.2-1.4	$\kappa - c - c$ or Br
R ₃ CH	1.4 – 1.6	_
_		R-C- =-C-
~ O− O− D− T−	2.1–2.6	- =O
: -		_
R-0-C-	3.1–3.9	N-C-
·I		
RCH ₂ Cl or Br	3.1-4.2	- C -O- ethe
R-C-O-C-	3.7 – 4.1	
- I =0		_
T C	С	$R - \mathbf{C} \equiv N$
) C); ; ;	
R-c	9.0 – 10.0	
Į		acids 0
0_/		
R-C	10.0 – 12.0	K-C argary — or ketor
H -0		0

C = 0

C = C

0 O

Ö

2220-2260 1680 - 17501620 - 16801000 - 1300750 - 1100

 $C \equiv N$

O-H (acids)

The Periodic Table of the Elements

_	(S) C (D) E	0, 00 E ~	o; _ c ~	8. 7 00 0	6. 0 no	2 c 5 %		0: wn	2] Sium
0	(18) 4.0 He helium 2	20.2 Ne neon	39.9 Ar argon 18	83.8 Kr krypton 36	131.3 Xe xenon 54	[222] Rn radon 86	d but	175.0 Lu lutetium 71	[262] Lr lawrencium 103
7	(17)	19.0 fluorine 9	35.5 CI chlorine 17	79.9 Br bromine 35	126.9 	[210] At astatine 85	en reporte	173.1 Yb ytterbium 70	No nobelium 102
9	(16)	16.0 oxygen 8	32.1 S sulfur 16	79.0 Se selenium 34	127.6 Te tellurium 52	[209] Po polonium 84	16 have be cated	168.9 Tm thulium 69	[258] Md mendelevium 101
2	(15)	14.0 N nitrogen 7	31.0 P phosphorus 15	74.9 AS arsenic 33	121.8 Sb antimony 51	209.0 Bi bismuth 83	numbers 112-116 havnot fully authenticated	167.3 Er erbium 68	[257] Fm fermium 100
4	(14)	12.0 C carbon 6	28.1 Si silicon 14	72.6 Ge germanium 32	Sn tin 50	207.2 Pb lead lead 82	tomic num	164.9 Ho holmium 67	[252] Es einsteinium 99
ო	(13)	10.8 B boron 5	27.0 Al aluminium 13	69.7 Ga gallium 31	114.8 In indium 49	204.4 Tl thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated	162.5 Dy dysprosium 66	Cf Californium 98
			(12)	65.4 Zn zinc 30	112.4 Cd cadmium 48	200.6 Hg mercury 80		158.9 Tb terbium 65	[247] BK berkelium 97
			(11)	63.5 Cu copper 29	107.9 Ag silver 47	197.0 Au gold 79	Rg roentgenium	157.3 Gd gadolinium 64	Cm curium 96
			(10)	58.7 Ni nickel 28	106.4 Pd palladium 46	195.1 Pt platinum 78	[281] Ds damstadtium 110	152.0 Eu europium 63	Am americium 95
			(6)	58.9 Co cobalt 27	102.9 Rb rhodium 45	192.2 r r iridium 77	[276] Mt meitnerium 109	Sm samarium 62	[244] Pu plutonium 94
	1.0 T hydrogen		(8)	55.8 Fe iron 26	Ru Ru ruthenium 44	190.2 Os osmium 76	[270] Hs hassium 108	[145] Pm promethium 61	Np Np neptunium 93
			(2)	54.9 Mn manganese 25	[98] Tc technetium 43	186.2 Re rhenium 75	[272] Bh bohrium 107	144.2 Nd neodymium 60	238.0 U uranium 92
		mass	(9)	52.0 Cr chromium 24		183.8 W tungsten 74	Sg seaborgium 106	140.9 144.2 Nd Praseodymium neodymium 59 60	Pa Pa protactinium 91
	Key	relative atomic mass symbol name atomic (proton) number	(5)	50.9 V vanadium 23		180.9 Ta tantalum 73	[268] Db dubnium 105	140.1 Ce cerium 58	232.0 Th thorium 90
		relat	(4)	47.9 Ti titanium 22		178.5 Hf hafnium 72	[267] Rf rutherfordium 104		
	,		(3)	45.0 Sc scandium 21	88.9 ×	138.9 La * lanthanum 57	[227] Ac † actinium 89	nides	səp
7	(2)	9.0 Be beryllium 4	24.3 Mg magnesium	40.1 Ca calcium	,	137.3 Ba barium 56	[226] Ra radium 88	* 58 - 71 Lanthanides	† 90 – 103 Actinides
-	(1)	6.9 Li lithium 3	23.0 Na sodium 11	39.1 K potassium 19	85.5 Rb rubidium 37	132.9 Cs caesium 55	[223] Fr francium 87	* 58 - 7	+ 90 - 16

	Answer all questions in the spaces provided.
1	A reaction mechanism is a series of steps by which an overall reaction may proceed. The reactions occurring in these steps may be deduced from a study of reaction rates. Experimental evidence about initial rates leads to a rate equation. A mechanism is then proposed which agrees with this rate equation.
	Ethanal dimerises in dilute alkaline solution to form compound ${\bf X}$ as shown in the following equation.
	$2CH_3CHO \longrightarrow CH_3CH(OH)CH_2CHO$
	X
	A chemist studied the kinetics of the reaction at 298 K and then proposed the following rate equation.
	Rate = k [CH ₃ CHO][OH ⁻]
1 (a)	Give the IUPAC name of compound X .
	(1 mark,
1 (b)	The initial rate of the reaction at 298 K was found to be $2.2 \times 10^{-3} \text{mol dm}^{-3} \text{s}^{-1}$ when the initial concentration of ethanal was 0.10mol dm^{-3} and the initial concentration of sodium hydroxide was 0.020mol dm^{-3}. Calculate a value for the rate constant at this temperature and give its units.
	Calculation
	Units
1 (c)	The sample of X produced consists of a racemic mixture (racemate). Explain how this racemic mixture is formed.

(2 marks)

Question 1 continues on the next page

1 (d)	A three-step mechanism has been proposed for this reaction according to the following
	equations.

Step 1
$$CH_3-C$$
 + $:\overline{O}H$ + $:\overline{C}H_2-C$ + $:\overline{C}H_2-C$

Step 2
$$CH_3-C$$
 H $+$ $: \overline{C}H_2-C$ H \longrightarrow CH_3-C CH_2-C H

1 (d) (i)	Using the rate equation, predict which of the three steps is the rate-determining step.
	Explain your answer.

Rate-determining step

Explanation

(2 marks)

(2 marks)

	(-1) (::)	Deduce the vale of othernal in Oten 4
1	(a) (II)	Deduce the role of ethanal in Step 1.

	(1 mark

1	(d) (iii)	Use your knowledge of reaction mechanisms to deduce the type of reaction occurring in Step 2 .	
		(1 mark)	
1	(d) (iv)	In the space below draw out the mechanism of Step 2 showing the relevant curly arrows.	
		(2 marks)	
1	(e)	In a similar three-step mechanism, one molecule of ${\bf X}$ reacts further with one molecule of ethanal. The product is a trimer containing six carbon atoms.	
		Deduce the structure of this trimer.	
		(d. manutal)	
		(1 mark)	
			Ľ

2		The reaction of methane with steam produces hydrogen for use in many industrial processes. Under certain conditions the following reaction occurs.								
	CH ₄ (g) +	$2H_2O(g) \rightleftharpoons C$	$O_2(g) + 4H_2(g)$	ΔH [⊕] = +165	i kJ mol ^{–1}					
2 (a)	with a cataly	Initially, 1.0 mol of methane and 2.0 mol of steam were placed in a flask and heated with a catalyst until equilibrium was established. The equilibrium mixture contained 0.25 mol of carbon dioxide.								
2 (a)	(i) Calculate th mixture.									
	Moles of me	Moles of methane								
	Moles of ste	eam								
	Moles of hy	drogen				 narks)				
2 (a) (ii) The volume of the flask was 5.0 dm ³ . Calculate the concentration of methane in the equilibrium mixture.					n, in mol dm ⁻³ ,					
						 mark)				
2 (b)		elow shows the ed mixture in the sam			,	тату				
		CII (a)	H ₂ O(g)	CO (a)	H ₂ (g)					
	gas	CH ₄ (g)	1120(9)	CO ₂ (g)	112(9)					
	gas concentration / mol dm ⁻³	0.10	0.48	0.15	0.25					
2 (b)	concentration / mol dm ⁻³		0.48	0.15	0.25					
2 (b)	concentration / mol dm ⁻³	0.10	0.48	0.15	0.25 ion.					
2 (b)	concentration / mol dm ⁻³	0.10	0.48	0.15	0.25 ion.	 mark)				
2 (b)	concentration / mol dm ⁻³	0.10	0.48	0.15	0.25 ion.	 mark)				

2 (b) (ii)	Calculate a value for K_c at temperature T and give its units.
	Calculation
	Units of K _c (3 marks)
2 (c)	The mixture in part (b) was placed in a flask of volume greater than $5.0\mathrm{dm}^3$ and allowed to reach equilibrium at temperature T . State and explain the effect on the amount of hydrogen.
	Effect on amount of hydrogen
	Explanation
	(3 marks)
2 (d)	Explain why the amount of hydrogen decreases when the mixture in part (b) reaches equilibrium at a lower temperature.
	(2 marks)
	Turn over for the next question

3 Haloalkanes are useful compounds in synthesis.
Consider the three reactions of the haloalkane A shown below.

3 (a) (i) Draw a **branched-chain** isomer of **A** that exists as optical isomers.

	(1 mark)	
he type of mechanism in Reaction 1		

3 (a) (ii) Name the type of mechanism in Reaction 1.

		(1 mark)

3 (a) (iii) Give the full IUPAC name of compound B.

1 mark)

3 (c)	Draw the repeating unit of the polymer formed by B and name the type of polymerisation involved.
	Repeating unit
	Type of polymerisation
3 (d) (i)	Outline a mechanism for Reaction 3.
	(4 marks)
3 (d) (ii)	State the conditions used in Reaction ${\bf 3}$ to form the maximum amount of the primary amine, ${\bf D}$.
	(1 mark)

Draw the structure of the secondary amine formed as a by-product in Reaction 3.	
(1	mark)
is a primary amine which has three peaks in its ¹³ C n.m.r. spectrum.	
An isomer of $\bf D$ is also a primary amine and also has three peaks in its $^{13}{\rm C}$ n.m.r. spectrum. Draw the structure of this isomer of $\bf D$.	
	mark)
Another isomer of D is a tertiary amine. Its ¹ H n.m.r. spectrum has three peaks. If the peaks is a doublet. Draw the structure of this isomer of D .	One
(1	mark)

4	In 2008, some	e food pro	ducts	containing	pork we	ere withdrav	wn from sa	le because tests
	showed that t	they conta	ined a	mounts of	compo	unds called	dioxins ma	any times greater
	than the reco	mmended	l safe l	levels.				

Dioxins can be formed during the combustion of chlorine-containing compounds in waste incinerators. Dioxins are very unreactive compounds and can therefore remain in the environment and enter the food chain.

Many dioxins are polychlorinated compounds such as tetrachlorodibenzodioxin (TCDD) shown below.

In a study of the properties of dioxins, TCDD and other similar compounds were synthesised. The mixture of chlorinated compounds was then separated before each compound was identified by mass spectrometry.

	compound was identified by mass spectrometry.	
4 (a)	Fractional distillation is not a suitable method to separate the mixture of chloring compounds before identification by mass spectrometry. Suggest how the mixture could be separated.	ated
	((1 mark)
4 (b)	The molecular formula of TCDD is $C_{12}H_4O_2Cl_4$ Chlorine exists as two isotopes ^{35}Cl (75%) and ^{37}Cl (25%). Deduce the number of molecular ion peaks in the mass spectrum of TCDD and calculate the m/z value of the most abundant molecular ion peak.	
	Number of molecular ion peaks	
	m/z value of the most abundant molecular ion peak	
	(2	? marks)

4 (c)

Suggest one operating condition in an incinerator that would minimise the formation of dioxins.
(1 mark)

6

4 (d)	TCDD can also be analysed using ¹³ C n.m.r.					
4 (d) (i)	Give the formula of the compound used as the standard when recording a ¹³ C spectrum.					
		(1 mark)				
4 (d) (ii)	Deduce the number of peaks in the ¹³ C n.m.r. spectrum of TCDD.	,				
		(1 mark)				
		(Timark)				
	Turn over for the next question					

5	In this question, give all values of pH to two decimal places.						
	Calculating the pH of aqueous solutions can involve the use of equilibrium constants such as \textit{K}_{w} and \textit{K}_{a}						
	$K_{\rm w}$ is the ionic product of water. The value of $K_{\rm w}$ is $5.48\times10^{-14}{\rm mol^2dm^{-6}}$ at $50{\rm ^{\circ}C}$.						
5 (a) (i)	Write an expression for pH.						
	(1 mark)						
5 (a) (ii)	Write an expression for $K_{\rm w}$						
	(1 mark)						
5 (b) (i)	Calculate the pH of pure water at 50 °C.						
	(2 marks)						
5 (b) (ii)	Suggest why this pure water is not acidic.						
	(1 mark)						
5 (b) (iii)	Calculate the pH of 0.140 mol dm ⁻³ aqueous sodium hydroxide at 50 °C.						
() ()							
	(3 marks)						

5 (c)	Calculate the pH of the solution formed when 25.0 cm ³ of 0.150 mol dm ⁻³ aqueous sulfuric acid are added to 30.0 cm ³ of 0.200 mol dm ⁻³ aqueous potassium hydroxide at 25 °C. Assume that the sulfuric acid is fully dissociated.						
5 (d) (i)	(6 marks) Write an expression for the acid dissociation constant, K_a , for ethanoic acid.						
o (a) (i)	Time an expression for the acid discondition constant, rig, for circumstant acid.						
5 (d) (ii)	The value of K_a for ethanoic acid is $1.74 \times 10^{-5} \text{mol dm}^{-3}$ at 25 °C. Calculate the pH of a 0.136mol dm^{-3} aqueous solution of ethanoic acid at this temperature.						
	(3 marks)						

Consider the tripeptide shown below that is formed from three amino acids, K, L and M. 6 (a)

6	(a) (i)	Name the	process by	y which	the trip	eptide is	s split ir	nto three	amino	acids.
---	---------	----------	------------	---------	----------	-----------	------------	-----------	-------	--------

(1 mark)

6 (a) (ii) Give the IUPAC name for the amino acid K.

(1 mark)

6 (a) (iii) Draw the structure of the zwitterion of amino acid L.

(1 mark)

6 (a) (iv) Draw the structure of the species formed by amino acid M at low pH.

(1 mark)

6 (b)	Consider	the	amino	acid	serine.
-----	----	----------	-----	-------	------	---------

6 (b) (i) Draw the structure of the product formed when serine reacts with an excess of CH₃Br

(1 mark)

6 (b) (ii) Draw the structure of the dipeptide formed by two molecules of serine.

(1 mark)

Turn over for the next question

	Answer all questions in the spaces provided.
7	Esters have many important commercial uses such as solvents and artificial flavourings in foods.
	Esters can be prepared in several ways including the reactions of alcohols with carboxylic acids, acid anhydrides, acyl chlorides and other esters.
7 (a)	Ethyl butanoate is used as a pineapple flavouring in sweets and cakes.
	Write an equation for the preparation of ethyl butanoate from an acid and an alcohol.
	Give a catalyst used for the reaction.
	(4 marks)

7 (b)	Butyl ethanoate is used as a solvent in the pharmaceutical industry.	
	Write an equation for the preparation of butyl ethanoate from an acid anhydride alcohol.	and an
	(3	marks)
7 (c)	Name and outline a mechanism for the reaction of CH ₃ COCI with CH ₃ OH to for ester.	m an
	(5	marks)
	Question 7 continues on the next page	
	gassion . seminass on the next page	

7 (d)	The ester shown below occurs in vegetable oils. Write an equation to show the formation of biodiesel from this ester.
	$CH_{2}OOCC_{17}H_{31}$ $CHOOCC_{17}H_{33}$ $CH_{2}OOCC_{17}H_{29}$
	CH ₂ OOCC ₁₇ H ₂₉
	(3 marks)

7 (e)	Draw the repeating unit of the polyester Terylene that is made from benzene-1,4-dicarboxylic acid and ethane-1,2-diol.	
	Although Terylene is biodegradeable, it is preferable to recycle objects made from Terylene.	
	Give one advantage and one disadvantage of recycling objects made from Terylene.	
	(4 marks)	
		19
	Turn over for the next question	

8	Consider compound ${\bf P}$ shown below that is formed by the reaction of benzene with an electrophile.
	C C C C C C C C C C
8 (a)	Give the two substances that react together to form the electrophile and write an equation to show the formation of this electrophile.
	(3 marks)
8 (b)	Outline a mechanism for the reaction of this electrophile with benzene to form P .
	(3 marks)

8 (c)	Compound Q is an isomer of P that shows optical isomerism. Q forms a silver mirror when added to a suitable reagent.	
	Identify this reagent and suggest a structure for Q .	
	(2 marks)	
	(2 marks)	
		L
	END OF QUESTIONS	

110 - 160

160 - 185

aldehydes or ketones

ر ا ا

10.0 - 12.0

90 - 150

50 - 90

8/ppm

20-50

GCE Chemistry Data Sheet

	r. chemical shift data
Table 2	¹ H n.m.

Table 1

Infrared absorption data	orption data	¹ H n.m.r. chemical shift data	iift data	¹³ C n.m.r. chemical shift data	data
Bond	Wavenumber	Type of proton	8/ppm	Type of carbon	8/6
	/cm_1	HCa	0 2 2 0		
N — H	3300 – 3500	RCH ₃	0.7 – 1.2		5
(बागावर)		I Z M	10-45	_	
O—H	3230-3550	R ₂ CH ₂	12-14	R — C — C or Br	10
(alcollols)		Z:	i	_	
C-H	2850-3300	۳3C ب	1.4 – 1.6		20.
O-H (acids)	2500-3000	⊼ O= O− −	2.1–2.6)-)=0) I
$C \equiv N$	2220-2260	エ -		/	
0 = 0	1680-1750	R-0-c-	3.1–3.9	Z-U-Z	25
S = S	1620-1680	- エ		alcohols,	
0-0	1000-1300	RCH ₂ Cl or Br	3.1-4.2	$-\mathbf{c}$ -0 ethers or	20
C – C	750-1100	R-C-0-C-	3.7-4.1		(
		- 1		$\mathbf{\hat{z}} = \mathbf{\hat{z}}$	06
		I \		$R\mathbf{-c}\equiv N$	110
			4.5-6.0		110
		٥	7		
		_	0.00	$egin{array}{ll} R-C & esters \ or \ & \ & acids \ & \mathcal{O} \ &$	160
		C		D	

The Periodic Table of the Elements

-	8											ო	4	Ŋ	9	7	0 (18)
(1)	(2)	,		Key			1.0 H hydrogen 1					(13)	(14)	(15)	(16)	(17)	4.0 He helium
6.9 Li	9.0 Be		relati	elative atomic mass symbol	mass							10.8 B	12.0 C	14.0 N	16.0 O	19.0 F	20.2 Ne
lithium 3	beryllium 4		atomic	name atomic (proton) number	number							boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
23.0 Na	24.3 Mg					1						27.0 A	28.1 Si	31.0 P	32.1 S	35.5 C	39.9 Ar
sodium 11	magnesium 12	(3)	(4)	(2)	(9)	(/)	(8)	(6)	(10)	(11)	(12)	aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
39.1 X	40.1 Ca	45.0 Sc	47.9 Ti	50.9 V	52.0 Ç	54.9 Mn	55.8 Fe	58.9 Co	58.7 Ni	63.5 Cu	65.4 Zn	69.7 Ga	72.6 Ge	74.9 As	79.0 Se	79.9 Br	83.8 Kr
potassium 19	calcium 20	scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
85.5 Rb	87.6 Sr	88.9	91.2 Z	92.9 Nb	96.0 Mo	[86] 2	101.1 Ru	102.9 Rh	106.4 Pd	107.9 Ag	112.4 Cd	114.8 In	118.7 Sn	121.8 Sb	127.6 Te	126.9	131.3 Xe
rubidium 37	strontium 38	yttrium 39	zirconium 40	_	E	ξ	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
132.9 Cs	137.3 Ba		178.5 H	180.9 Ta	183.8 X	186.2 Re	190.2 Os	192.2 Ir	195.1 Pt	197.0 Au	200.6 Hg	204.4 T	207.2 Pb	209.0 Bi	[209] Po	[210] At	[222] Rn
caesium 55	barium 56	lanthanum 57	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	blog 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
[223] Fr	[226] Ra		[267] Rf	[268] Db	[271] Sg	[272] Bh	[270] Hs	[276] Mt	[281] Ds	[280] Rg		Elements with atomic numbers 112-116 have been reported but	atomic num	bers 112-1	16 have bee	en reported	but
francium 87	radium 88	actinium 89	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	darmstadtium 110	roentgenium 111			not fr	not fully authenticated	cated		
				140.1	140.9	144.2	[145]	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.1	175.0
*	-	7		Ö	ቯ	Š	Pm	Sm	Eu	В	₽ L	ک	운	ш	Ę	Υp	Ľ
30 - / 1 Lantinamues	- Lanina	Tildes		cerium 58	praseodymium neodymiun 59 60	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70	lutetium 71
-				232.0 Th	231.0 Pa	238.0 U	[237] Np	[244] Pu	[243] Am	[247] Cm	[247] BK	[<u>7</u> 21]	[252] Es	[257] Fm	[258] Md	[259] No	[562]
T 90 - 103 Actinides	J3 Actin	Ides			protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	Ε	californium 98	ei.	fermium 100	mendelevium 101	nobelium 102	lawrencium 103

Answer all questions in the spaces provided.

Titration curves labelled **A**, **B**, **C** and **D** for combinations of different aqueous solutions of acids and bases are shown below.

All solutions have a concentration of 0.1 mol dm⁻³.

1 (a) In this part of the question write the appropriate letter in each box.

From the curves A, B, C and D, choose the curve produced by the addition of

ammonia to 25 cm³ of hydrochloric acid sodium hydroxide to 25 cm³ of ethanoic acid

nitric acid to 25 cm³ of potassium hydroxide

(3 marks)

1 (b) A table of acid–base indicators is shown below.

The pH ranges over which the indicators change colour and their colours in acid and alkali are also shown.

Indicator	pH range	Colour in acid	Colour in alkali
Trapaeolin	1.3 – 3.0	red	yellow
Bromocresol green	3.8 - 5.4	yellow	blue
Cresol purple	7.6 - 9.2	yellow	purple
Alizarin yellow	10.1 – 12.0	yellow	orange

1 (b) (i)	Select from the table an indicator that could be used in the titration that produces curve B but not in the titration that produces curve A .
	(1 mark)
1 (b) (ii)	Give the colour change at the end point of the titration that produces curve D when cresol purple is used as the indicator.
	(1 mark)

Turn over for the next question

2	This question is about the pH of some solutions containing potassium hydroxide and ethanoic acid.
	Give all values of pH to 2 decimal places.
2 (a) (i)	Write an expression for pH.
	(1 mark)
2 (a) (ii)	Write an expression for the ionic product of water, $K_{\rm w}$
	(1 mark)
2 (2) (iii)	At 10 °C, a 0.154 mol dm ⁻³ solution of potassium hydroxide has a pH of 13.72
2 (a) (III)	Calculate the value of $K_{\rm w}$ at 10 °C.
	(2 marks)
	(Extra space)

2 (b)	At 25 °C, the acid dissociation constant K_a for ethanoic acid has the value $1.75 \times 10^{-5} \mathrm{mol} \mathrm{dm}^{-3}$.
2 (b) (i)	Write an expression for K_a for ethanoic acid.
	(1 mark)
2 (b) (ii)	Calculate the pH of a 0.154 mol dm ⁻³ solution of ethanoic acid at 25 °C.
	(3 marks)
	(Extra space)
	Question 2 continues on the next page

2 (c)	At 25 °C, the acid dissociation constant K_a for ethanoic acid has the value 1.75 × 10 ⁻⁵ mol dm ⁻³ .
2 (c) (i)	Calculate the pH of the solution formed when $10.0\mathrm{cm^3}$ of $0.154\mathrm{mol}$ dm ⁻³ potassium hydroxide are added to $20.0\mathrm{cm^3}$ of $0.154\mathrm{mol}$ dm ⁻³ ethanoic acid at $25^\circ\mathrm{C}$.
	(4 marks)
	(Extra space)

2 (c) (ii)	(ii) Calculate the pH of the solution formed when 40.0 cm ³ of 0.154 mol dm ⁻³ potassium hydroxide are added to 20.0 cm ³ of 0.154 mol dm ⁻³ ethanoic acid at 25 °C.					
	At 25 °C, $K_{\rm w}$ has the value 1.00 × 10 ⁻¹⁴ mol ² dm ⁻⁶ .					
	(4 marks) (Extra space)	Γ				
	Turn over for the next question					

3	The following dynamic equilibrium was established at temperature ${\it T}$ in a closed container.
	$P(g) + 2Q(g) \Longrightarrow 2R(g) \qquad \Delta H^{\oplus} = -50 \text{ kJ mol}^{-1}$
	The value of K_c for the reaction was 68.0 mol ⁻¹ dm ³ when the equilibrium mixture contained 3.82 mol of P and 5.24 mol of R .
3 (a)	Give the meaning of the term dynamic equilibrium.
	(2 marks) (Extra space)
3 (b)	Write an expression for K_c for this reaction.
	(1 mark)
3 (c)	The volume of the container was 10.0 dm ³ .
	Calculate the concentration, in mol dm^{-3} , of \mathbf{Q} in the equilibrium mixture.
	(4 marks) (Extra space)

3 (d)	State the effect, if any, on the equilibrium amount of P of increasing the tempera All other factors are unchanged.	ature.
3 (e)	State the effect, if any, on the equilibrium amount of P of using a container of lavolume. All other factors are unchanged.	
3 (f)	State the effect, if any, on the value of $K_{\rm c}$ of increasing the temperature. All other factors are unchanged.	,
3 (g)	State the effect, if any, on the value of K_c of using a container of larger volume. All other factors are unchanged.	
3 (h)	Deduce the value of the equilibrium constant, at temperature T , for the reaction	
	$2R(g) \rightleftharpoons P(g) + 2Q(g)$	
		(1 mark)
		1
	Turn over for the next question	

4	The amide or peptide link is found in synthetic polyamides and also in naturally-occurring proteins.
4 (a) (i)	Draw the repeating unit of the polyamide formed by the reaction of propanedioic acid with hexane-1,6-diamine.
	(2 marks)
4 (a) (ii)	In terms of the intermolecular forces between the polymer chains, explain why polyamides can be made into fibres suitable for use in sewing and weaving, whereas polyalkenes usually produce fibres that are too weak for this purpose.
	(3 marks)
	(Extra space)

4	(b)	(i)	Name and outline a	mechanism	for the reaction	of CH ₂ CH	₀COCl with	CH ₂ NH ₂
•	\~ <i>I</i>	۱٠/	rtaino ana catimo t	i iiiooiiaiiioiii	ioi tilo rodotioni	01 0113011) C C WIGH	011314119

Name of mechanism.....

Mechanism

(5 marks)

4 (b) (ii) Give the name of the product containing an amide linkage that is formed in the reaction in part 4 (b) (i).

.....(1 mark)

4 (c) The dipeptide shown below is formed from two different amino acids.

Draw the structure of the alternative dipeptide that could be formed by these two amino acids.

(1 mark)

Question 4 continues on the next page

4 ((d)	The amino	acids serine	and asparti	c acid are	shown bel	OW.
- 1	~ <i>,</i>	THO WITHIN	adiad doili	aria aoparti	o aoia ai	, 0110 W11 DOI	O

$$\begin{array}{cccc} \mathsf{CH_2OH} & \mathsf{COOH} \\ | & | \\ \mathsf{H-C-COOH} & \mathsf{H-C-CH_2COOH} \\ | & | \\ \mathsf{NH_2} & \mathsf{NH_2} \\ \mathsf{serine} & \mathsf{aspartic\ acid} \end{array}$$

4 (d) (i) Give the IUPAC name of serine.

(1 mark)

4 (d) (ii) Draw the structure of the species formed when aspartic acid reacts with aqueous sodium hydroxide.

(1 mark)

4 (d) (iii) Draw the structure of the species formed when serine reacts with dilute hydrochloric acid.

(1 mark)

4 (d) (iv) Draw the structure of the species formed when serine reacts with an excess of bromomethane.

(1 mark)

5	Items softened with plasticisers have become an essential part of our modern society.
	Compound S , shown below, is commonly known as phthalic acid.
	Esters of phthalic acid are called phthalates and are used as plasticisers to soften polymers such as PVC, poly(chloroethene).

S

5 (a)	Give the torac hame for pritialic acid.	
		(1 mark

5 (b) Draw the displayed formula of the repeating unit of poly(chloroethene).

(1 mark)

Question 5 continues on the next page

- **5 (c)** The ester diethyl phthalate (DEP) is used in food packaging and in cosmetics.
- **5 (c) (i)** Complete the following equation showing the formation of DEP from phthalic anhydride.

(2 marks)

5 (c) (ii) Deduce the number of peaks in the ¹³C n.m.r. spectrum of DEP.

(1 mark)

5 (c) (iii) One of the peaks in the 13 C n.m.r. spectrum of DEP is at δ = 62 ppm. **Table 3** on the Data Sheet can be used to identify a type of carbon atom responsible for this peak.

Draw a circle around one carbon atom of this type in the structure below.

(1 mark)

5 (d) The mass spectrum of DEP includes major peaks at m/z = 222 (the molecular ion) and at m/z = 177

Write an equation to show the fragmentation of the molecular ion to form the fragment that causes the peak at m/z = 177

.....(2 marks)

5 (e)	Because of their many uses, phthalates have been tested for possible adverse effects to humans and to the environment.	
	The European Council for Plasticisers and Intermediates is an organisation that represents the manufacturers of plasticisers.	
	The text below is taken from a document written by the organisation.	
	'Research demonstrates that phthalates, at current and foreseeable exposure levels, do not pose a risk to human health or to the environment. Experimental evidence shows that phthalates are readily biodegradable and do not persist for long in the environment.'	
5 (e) (i)	Hydrolysis of DEP in an excess of water was found to follow first order kinetics.	
	Write a rate equation for this hydrolysis reaction using DEP to represent the ester.	
	(1 mark)	
5 (e) (ii)	Suggest what needs to be done so that the public could feel confident that the research quoted above is reliable.	
	(2 marks)	
	(2 marks) (Extra space)	
		11

6 (a)	In the presence of the catalyst rhodium, the reaction between NO and $\rm H_2$ occurs according to the following equation.
	$2NO(g) + 2H_2(g) \longrightarrow N_2(g) + 2H_2O(g)$
	The kinetics of the reaction were investigated and the rate equation was found to be
	$rate = k[NO]^2[H_2]$
	The initial rate of reaction was $6.2 \times 10^{-6} \text{mol dm}^{-3} \text{s}^{-1}$ when the initial concentration of NO was $2.9 \times 10^{-2} \text{mol dm}^{-3}$ and the initial concentration of H_2 was $2.3 \times 10^{-2} \text{mol dm}^{-3}$.
6 (a) (i)	Calculate the value of the rate constant under these conditions and give its units.
	Calculation
	Units
	(3 marks)
6 (a) (ii)	Calculate the initial rate of reaction if the experiment is repeated under the same conditions but with the concentrations of NO and of $\rm H_2$ both doubled from their original values.
	(1 mark)

6 (b)	Using the rate equation and the overall equation, the following three-step mechanism for the reaction was suggested. X and Y are intermediate species.	
	Step 1 NO + NO \longrightarrow X	
	Step 2 $X + H_2 \longrightarrow Y$	
	Step 3 $Y + H_2 \longrightarrow N_2 + 2H_2O$	
	Suggest which one of the three steps is the rate-determining step. Explain your answer.	
	Rate-determining step	
	Explanation	

(Extra space)

6

Turn over for the next question

Answer all	guestions	in	the s	spaces	provided.
------------	-----------	----	-------	--------	-----------

- 7 Organic chemists use a variety of methods to distinguish between compounds. These methods include analytical and spectroscopic techniques.
- **7 (a)** The following compounds can be distinguished by observing what happens in test-tube reactions.

For each pair, suggest a suitable reagent or reagents that could be added separately to each compound in order to distinguish them.

Describe what you would observe with each compound.

	Describe what you would observe with each of	compouna.	
7 (a) (i)	CH ₃ O C-CH ₃	HO C-CH ₂ CH ₃	
	E	F	
			(3 marks)

7 (a) (ii)	H_3C $C-CH_2CH_3$ C $C-CH_2CH_3$ C
7 (a) (iii)	CH ₃ H OH OH CH ₃ H ₃ C - C - C - C - H H ₃ C - C - C - H CH ₃ H H CH ₃ H H K
	(3 marks)
	Question 7 continues on the next page

` '	Compounds ${\bf J}$ and ${\bf K}$ can also be distinguished using spectroscopic techniques such as
	¹ H n.m.r.

7	(b)	(i)	Name compound	J.
---	-----	-----	---------------	----

7 (b) (ii)

Give the total number of peaks in the ¹ H n.m.r. spectrum of J .
State the splitting pattern, if any, of the peak for the protons labelled a.
(3 marks)
Name compound K .
Name compound K . Give the total number of peaks in the ¹ H n.m.r. spectrum of K .
Give the total number of peaks in the ¹ H n.m.r. spectrum of K .
·
Give the total number of peaks in the ¹ H n.m.r. spectrum of K .
Give the total number of peaks in the ¹ H n.m.r. spectrum of K . State the splitting pattern, if any, of the peak for the protons labelled <i>b</i> .
Give the total number of peaks in the ¹ H n.m.r. spectrum of K . State the splitting pattern, if any, of the peak for the protons labelled <i>b</i> .
Give the total number of peaks in the ¹ H n.m.r. spectrum of K . State the splitting pattern, if any, of the peak for the protons labelled <i>b</i> .
Give the total number of peaks in the ¹ H n.m.r. spectrum of K . State the splitting pattern, if any, of the peak for the protons labelled <i>b</i> .
Give the total number of peaks in the ¹ H n.m.r. spectrum of K . State the splitting pattern, if any, of the peak for the protons labelled <i>b</i> .
Give the total number of peaks in the ¹ H n.m.r. spectrum of K . State the splitting pattern, if any, of the peak for the protons labelled <i>b</i> .

15

(3 marks)

8	The hydrocarbons benzene and cyclohexene are both unsaturated compounds. Benzene normally undergoes substitution reactions, but cyclohexene normally undergoes addition reactions.	
8 (a)	The molecule cyclohexatriene does not exist and is described as hypothetical. Use the following data to state and explain the stability of benzene compared with the hypothetical cyclohexatriene.	
	+ H_2 \longrightarrow $\Delta H^{\oplus} = -120 \mathrm{kJ} \mathrm{mol}^{-1}$	
	+ $3H_2$ \longrightarrow $\Delta H^{\oplus} = -208 \text{ kJ mol}^{-1}$	
	(Extra space)(4 mark	,
	Question 8 continues on the next page	

8 (b)	Benzene can be converted into amine ${\bf U}$ by the two-step synthesis shown below.
	$\stackrel{\text{Reaction 1}}{\longrightarrow} \stackrel{\text{NO}_2}{\longrightarrow} \stackrel{\text{Reaction 2}}{\longrightarrow} \stackrel{\text{NH}_2}{\longrightarrow}$
	The mechanism of Reaction 1 involves attack by an electrophile. Give the reagents used to produce the electrophile needed in Reaction 1. Write an equation showing the formation of this electrophile. Outline a mechanism for the reaction of this electrophile with benzene.
	(6 marks)

8 (c)	Cyclohexene can be converted into amine W by the two-step synthesis shown below.
	$\xrightarrow{\text{Reaction 3}} \xrightarrow{\text{Compound}} \xrightarrow{\text{Reaction 4}} \xrightarrow{\text{NH}_2} \xrightarrow{\text{W}}$
	Suggest an identity for compound V . For Reaction 3 , give the reagent used and name the mechanism. For Reaction 4 , give the reagent and condition used and name the mechanism. Equations and mechanisms with curly arrows are not required.
	(6 marks)
	Question 8 continues on the next page

8 (d)	Explain why amine $oldsymbol{U}$ is a weaker base than amine $oldsymbol{W}$.	
	(3 marks)	
	(Extra space)	19
	END OF QUESTIONS	

GCE Chemistry Data Sheet

Table 1Infrared absorption data

Bond	Wavenumber /cm ⁻¹
N — H (amines)	3300 – 3500
O — H (alcohols)	3230-3550
C-H	2850-3300
O — H (acids)	2500-3000
$C \equiv N$	2220-2260
C = O	1680 – 1750
C = C	1620 – 1680
C-O	1000-1300
C-C	750 – 1100

Table 2 ¹H n.m.r. chemical shift data

Type of proton	δ/ppm
RO H	0.5 - 5.0
RC H ₃	0.7 - 1.2
RNH_2	1.0 - 4.5
R_2CH_2	1.2 - 1.4
R ₃ C H	1.4 - 1.6
R-C-C- 	2.1-2.6
R-O-C- H	3.1-3.9
RC H ₂ Cl or Br	3.1-4.2
R-C-O-C- 0 H	3.7-4.1
Ŗ Ħ	
c = c	4.5 - 6.0
R-C H	9.0 – 10.0
R-C O-H	10.0 – 12.0

Table 3¹³C n.m.r. chemical shift data

Type of carbon	δ/ppm
$-\overset{\mid}{\mathbf{c}}-\overset{\mid}{\mathbf{c}}-$	5-40
$R - \overset{\mid}{\mathbf{C}} - Cl \text{ or Br}$	10-70
$\begin{array}{c c} R-C-\overset{ }{\mathbf{C}}-\\ & \\ O \end{array}$	20-50
$R - \stackrel{ }{\mathbf{c}} - N$	25-60
alcohols, -C-O- ethers or esters	50-90
$\mathbf{c} = \mathbf{c}$	90-150
$R-C \equiv N$	110-125
	110-160
R— c — esters or acids	160 – 185
R- c aldehydes or ketones	190 – 220

The Periodic Table of the Elements

1	2											3	4	5	6	7	0
																	(18)
							1.0 H hydrogen										4.0 He helium
(1)	(2)	1		Key		_	1					(13)	(14)	(15)	(16)	(17)	2
6.9 Li	9.0 Be		relative atomic mass symbol									10.8 B	12.0 C	14.0 N	16.0 O	19.0 F	20.2 Ne
lithium 3	beryllium 4		atomi	name c (proton) ı	number							boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
23.0 Na	24.3 Mg					_						27.0 Al	28.1 Si	31.0 P	32.1 S	35.5 Cl	39.9 Ar
sodium 11	magnesium 12	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
39.1 K	40.1 Ca	45.0 Sc	47.9 Ti	50.9 V	52.0 Cr	54.9 Mn	55.8 Fe	58.9 Co	58.7 Ni	63.5 Cu	65.4 Zn	69.7 Ga	72.6 Ge	74.9 As	79.0 Se	79.9 Br	83.8 Kr
potassium 19	calcium 20	scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
85.5 Rb	87.6 Sr	88.9 Y	91.2 Zr	92.9 Nb	96.0 Mo	[98] Tc	101.1 Ru	102.9 Rh	106.4 Pd	107.9 Ag	112.4 Cd	114.8 In	118.7 Sn	121.8 Sb	127.6 Te	126.9 I	131.3 Xe
rubidium 37	strontium 38	yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
132.9 Cs	137.3 Ba	138.9 La *	178.5 Hf	180.9 Ta	183.8 W	186.2 Re	190.2 Os	192.2 Ir	195.1 Pt	197.0 Au	200.6 Hg	204.4 Tl	207.2 Pb	209.0 Bi	[209] Po	[210] At	[222] Rn
caesium 55	barium 56	lanthanum 57	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
[223] Fr	[226] Ra	[227] Ac †	[267] Rf	[268] Db	[271] Sg	[272] Bh	[270] Hs	[276] Mt	[281] Ds	[280] Rg	Elements with atomic numbers 112-116 have been reported but					d but	
francium 87	radium 88	actinium 89	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	darmstadtium 110	roentgenium 111			not fu	ılly authenti	cated		
		•										1					
				140.1 Ce	140.9 Pr	144.2 Nd	[145] Pm	150.4 Sm	152.0 Eu	157.3 Gd	158.9 Tb	162.5 Dy	164.9 Ho	167.3 Er	168.9 Tm	173.1 Yb	175.0 Lu
* 58 – 71	I Lantha	nides		cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70	lutetium 71
			231.0 Pa	238.0 U	[237] Np	[244] Pu	[243] Am	[247] Cm	[247] Bk	[251] Cf	[252] Es	[257] Fm	[258] Md	[259] No	[262] Lr		
1 90 - 10	JO ACIIII	iues		thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102	lawrencium 103

Answer all questions in the spaces provided.

The initial rate of the reaction between two gases **P** and **Q** was measured in a series of experiments at a constant temperature. The following rate equation was determined.

rate =
$$k[P]^2[Q]$$

1 (a) Complete the table of data below for the reaction between P and Q.

Experiment	Initial [P]/mol dm ⁻³	Initial [Q]/mol dm ⁻³	Initial rate/mol dm ⁻³ s ⁻¹
1	0.20	0.30	1.8×10^{-3}
2	0.40	0.60	
3	0.60		5.4×10^{-3}
4		0.90	12.2×10^{-3}

(Space for working)

1 (b)	Use the data from Experiment 1 to calculate a value for the rate constant <i>k</i> and deduce its units.
	Calculation
	Units
	(3 marks)

1 (c) Consider the graphs E, F, G and H below.

Write in the box below the letter of the graph that shows how the rate constant k varies with temperature.

(1 mark)

7

2	At high temperatures and in the presence of a catalyst, sulfur trioxide decomposes according to the following equation.			
	$2SO_3(g)$ \Longrightarrow $2SO_2(g) + O_2(g)$ $\Delta H^{\oplus} = +196 \text{ kJ mol}^{-1}$			
2 (a)	In an experiment, 8.0mol of sulfur trioxide were placed in a container of volume 12.0dm^3 and allowed to come to equilibrium. At temperature T_1 there were 1.4mol of oxygen in the equilibrium mixture.			
2 (a) (i)	Calculate the amount, in moles, of sulfur trioxide and of sulfur dioxide in the equilibrium mixture.			
	Amount of sulfur trioxide			
	Amount of sulfur dioxide			
2 (a) (ii)	Write an expression for the equilibrium constant, K_c , for this equilibrium.			
	(1 mark)			
2 (a) (iii)	Deduce the units of K_c for this equilibrium.			
	(1 mark)			
2 (a) (iv)	Calculate a value of K_c for this equilibrium at temperature T_1			
	(If you were unable to complete the calculations in part (a) (i) you should assume that the amount of sulfur trioxide in the equilibrium mixture was 5.8 mol and the amount of sulfur dioxide was 2.1 mol. These are not the correct values.)			
	(3 marks)			
	(Extra space)			

2 (b)	The experiment was repeated at the same temperature using the same amount sulfur trioxide but in a larger container. State the effect, if any, of this change on:	int of
2 (b) (i)	the amount, in moles, of oxygen in the new equilibrium mixture	
		(1 mark)
2 (b) (ii)	the value of K_c	
		(1 mark)
2 (c)	The experiment was repeated in the original container but at temperature T_2 . The value of K_c was smaller than the value at temperature T_1 . State which is the higher temperature, T_1 or T_2 . Explain your answer.	
	Higher temperature	
	Explanation	
	(Extra space)	(3 marks)

3	Ammonia and ethylamine are examples of weak Brønsted-Lowry bases.
3 (a)	State the meaning of the term Brønsted–Lowry base.
	(1 mark)
3 (b) (i)	Write an equation for the reaction of ethylamine (CH ₃ CH ₂ NH ₂) with water to form a weakly alkaline solution.
	Wouldy alliante conditions
	(1 mark)
3 (b) (ii)	In terms of this reaction, state why the solution formed is weakly alkaline.
	(1 mark)
3 (c)	State which is the stronger base, ammonia or ethylamine. Explain your answer.
	Stronger base
	Explanation
	(3 marks)
	(Extra space)

3 (d)	Give the formula of an organic compound that forms an alkaline buffer solution when added to a solution of ethylamine.			
	(1 mark)			
3 (e)	Explain qualitatively how the buffer solution in part (d) maintains an almost constant pH when a small amount of hydrochloric acid is added to it.			
	(2 marks) (Extra space)			
	Turn over for the next question			

4	This question involves calculations about two strong acids and one weak acid. All measurements were carried out at 25 °C.
4 (a)	A 25.0 cm ³ sample of 0.0850 mol dm ⁻³ hydrochloric acid was placed in a beaker and 100 cm ³ of distilled water were added. Calculate the pH of the new solution formed. Give your answer to 2 decimal places.
	(2 marks) (Extra space)
4 (b)	HX is a weak monobasic acid.
4 (b) (i)	Write an expression for the acid dissociation constant, K_a , for HX.
	(1 mark)
4 (b) (ii)	The pH of a $0.0850\mathrm{mol}~\mathrm{dm^{-3}}$ solution of HX is 2.79 Calculate a value for the acid dissociation constant, K_a , of this acid. Give your answer to 3 significant figures.
	(3 marks)
	(Extra space)

4 (c)	A 25.0 cm ³ sample of 0.620 mol dm ⁻³ nitric acid was placed in a beaker and 38.2 cm ³ of 0.550 mol dm ⁻³ aqueous sodium hydroxide were added. Calculate the pH of the solution formed. Give your answer to 2 decimal places.	
	The ionic product of water $K_{\rm w}$ = 1.00 \times 10 ⁻¹⁴ mol ² dm ⁻⁶ at 25 °C.	
	(6 marks)	

5 Mass spectrometry is used by organic chemists to help distinguish between different compounds.

Four isomers of C₉H₁₀O, shown below, were analysed by mass spectrometry.

The mass spectra obtained from these four isomers were labelled in random order as I, II, III and IV.

Each spectrum contained a molecular ion peak at m/z = 134

The data in the table below show the m/z values greater than 100 for the **major** peaks in each spectrum due to fragmentation of the molecular ion. The table also shows where no major peaks occurred.

Spectrum	m/z values for major peaks	No major peak at <i>m</i> / <i>z</i>
I	119	133, 105
II	133, 119 and 105	
III	133, 105	119
IV	105	133, 119

5 (a)	Two of the molecular ions fragmented to form an ion with m/z = 133 by losing a radical dentify the radical that was lost.
	(1 mar
5 (b)	Two of the molecular ions fragmented to form an ion with $m/z = 119$ by losing a radical dentify the radical that was lost.
	(1 mar

5 (c)	Three of the molecular ions fragmented to form ions with $m/z = 105$ by losing with $M_r = 29$	a radical	
	Identify two different radicals with M_r = 29 that could have been lost.		
	Radical 1		
	Radical 2	(0,, -	
E (d)	Consider the structures of the four isomers and the fragmentations indicated	(2 marks)	
5 (d)	Consider the structures of the four isomers and the fragmentations indicated (a) to (c). Write the letter A, B, C or D, in the appropriate box below, to identify the compathat produces each spectrum.		
	Spectrum I		
	Spectrum II		
	Spectrum III		
	Spectrum IV	(4 , , , , , , , , , , , , , , , , , , ,	
		(4 marks)	8
			٦
	Turn over for the next question		

- 6 Compound **X** (C₆H₁₂O₂) was analysed by infrared spectroscopy and by proton nuclear magnetic resonance spectroscopy.
- 6 (a) The infrared spectrum of **X** is shown below.

 Use **Table 1** on the Data Sheet to help you answer the question.

Identify the functional group that causes the absorption at 3450 cm⁻¹ in the spectrum.

(1 mark)

6 (b) The proton n.m.r. spectrum of **X** consists of 4 singlet peaks.

> The table below gives the chemical shift for each of these peaks, together with their integration values.

δ/ppm	1.2	2.2	2.6	3.8
Integration value	6	3	2	1

Use Table 2 on the Data Sheet to help you answer the following questions.

Use the chemical shift and the integration data to show what can be deduced about the structure of **X** from the presence of the following in its proton n.m.r. spectrum.

6 (b) (i) The peak at $\delta = 2.6$

		(1 mark)

6 (b) (ii) The peak at $\delta = 2.2$

(1 ma)	rl/\

(1 mark)

6 (b) (iii) The peak at δ = 1.2

	(1 mark)

6 (b) (iv) Deduce the structure of \mathbf{X} ($C_6H_{12}O_2$)

(1 mark)

		10	
7	This dipeptide can be	converted into a methyl est	react together to form a dipeptide. ter called aspartame.
	$\begin{array}{c} H \\ \\ \\ H_2 N - C - COOH \\ \\ CH_2 \\ \\ COOH \end{array}$	H H ₂ N-C-COOH CH ₂	$H_{2}N - C - C - N - C - C$ CH_{2} CH_{2} CH_{2} CH_{2} $COOH$
	aspartic acid	phenylalanine	aspartame
	Aspartame has a swee people with diabetes.	et taste and is used in soft	drinks and in sugar-free foods for
			After a longer time the peptide link hese amino acids tastes sweet.
7 (a)	Apart from the release foods that are to be co		aspartame is not used to sweeten
			(1 mark)
7 (b)	Give the IUPAC name	of aspartic acid.	
			(1 mark)

7 (c) Draw the organic species formed by aspartic acid at high pH.

(1 mark)

7 (d)	Draw the zwitterion of phenylalanine.	
	(1 mark)	
7 (e)	Phenylalanine exists as a pair of stereoisomers.	
7 (e) (i)	State the meaning of the term <i>stereoisomers</i> .	
	(2 marks)	
7 (e) (ii)	Explain how a pair of stereoisomers can be distinguished.	
	(2 marks)	
	(Extra space)	8

8	Common	substances	used in	everyda	y life	often	contain	organic	compounds.

- 8 (a) State an everyday use for each of the following compounds.

- **8 (a) (iii)** [C₁₆H₃₃N(CH₃)₃]⁺ Br⁻ (1 mark)
- 8 (b) The following structures are the repeating units of two different condensation polymers.

 For each example, name the type of condensation polymer. Give a common name for a polymer of this type.
- 8 (b) (i) -C-C-C-CH₂-CH₂-O-

Type of condensation polymer

Type of condensation polymer

8 (b) (iii)) (iii) Explain why the polymer in part (b) (ii) has a higher melting point than the polymer in part (b) (i).		
	(2 marks) (Extra space)		
	Turn over for the next question		

Many aromatic nitro compounds are used as explosives. One of the most famous is 2-methyl-1,3,5-trinitrobenzene, originally called trinitrotoluene or TNT. This compound, shown below, can be prepared from methylbenzene by a sequence of nitration reactions.

$$O_2N$$
 NO_2
 NO_2

- **9** (a) The mechanism of the nitration of methylbenzene is an electrophilic substitution.
- **9 (a) (i)** Give the reagents used to produce the electrophile for this reaction. Write an equation or equations to show the formation of this electrophile.

Reagents	
quation	
900001	
/-	
(3)	marks)

9 (a) (ii) Outline a mechanism for the reaction of this electrophile with methylbenzene to produce 4-methylnitrobenzene.

(3 marks)

9 (b)	Deduce the number of peaks in the ¹³ C n.m.r. spectrum of TNT.
	(1 mark)
9 (c)	Deduce the number of peaks in the ¹ H n.m.r. spectrum of TNT.
	(1 mark)
9 (d)	Using the molecular formula ($C_7H_5N_3O_6$), write an equation for the decomposition reaction that occurs on the detonation of TNT. In this reaction equal numbers of moles of carbon and carbon monoxide are formed together with water and nitrogen.
	(1 mark)
	Turn over for the next question

	Answer all questions in the spaces provided.
10	The reactions of molecules containing the chlorine atom are often affected by other functional groups in the molecule.
	Consider the reaction of CH ₃ CH ₂ COCl and of CH ₃ CH ₂ CH ₂ Cl with ammonia.
10 (a)	For the reaction of $\mathrm{CH_3CH_2COCl}$ with ammonia, name and outline the mechanism and name the organic product.
	(C. monto)
	(6 marks) (Extra space)

10 (b)	For the reaction of CH ₃ CH ₂ CH ₂ Cl with an excess of ammonia, name and outline the mechanism and name the organic product.
	(6 marks)
	(Extra space)
	Question 10 continues on the next page

10 (c)	Suggest one reason why chlorobenzene (C_6H_5Cl) does not react with ammonia under normal conditions.	
	(1 mark) (Extra space)	
		L

Chemists have to design synthetic routes to convert one organic compound into another. Propanone can be converted into 2-bromopropane by a three-step synthesis. Step 1: propanone is reduced to compound L. Step 2: compound L is converted into compound M. Step 3: compound M reacts to form 2-bromopropane. Deduce the structure of compounds L and M. For each of the three steps, suggest a reagent that could be used and name the mechanism. Equations and curly arrow mechanisms are not required.	
Step 1: propanone is reduced to compound L. Step 2: compound L is converted into compound M. Step 3: compound M reacts to form 2-bromopropane. Deduce the structure of compounds L and M. For each of the three steps, suggest a reagent that could be used and name the mechanism. Equations and curly arrow mechanisms are not required.	
Step 2: compound L is converted into compound M. Step 3: compound M reacts to form 2-bromopropane. Deduce the structure of compounds L and M. For each of the three steps, suggest a reagent that could be used and name the mechanism. Equations and curly arrow mechanisms are not required.	
For each of the three steps, suggest a reagent that could be used and name the mechanism. Equations and curly arrow mechanisms are not required.	
mechanism. Equations and curly arrow mechanisms are not required.	
(8)	 marks)
(Extra space)	

END OF QUESTIONS

GCE Chemistry Data Sheet

Table 1Infrared absorption data

Bond	Wavenumber /cm ⁻¹
N — H (amines)	3300 – 3500
O — H (alcohols)	3230-3550
C-H	2850-3300
O — H (acids)	2500-3000
$C \equiv N$	2220-2260
C = O	1680 – 1750
C = C	1620 – 1680
C-O	1000-1300
C-C	750 – 1100

Table 2 ¹H n.m.r. chemical shift data

Type of proton	δ/ ppm
RO H	0.5-5.0
RC H ₃	0.7 - 1.2
RNH_2	1.0 - 4.5
R_2CH_2	1.2 - 1.4
R ₃ C H	1.4 - 1.6
R-C-C- 0	2.1-2.6
R-O-C- H	3.1-3.9
RCH ₂ Cl or Br	3.1-4.2
R-C-O-C- 0 H	3.7 – 4.1
R H	
C = C	4.5 - 6.0
R-C H	9.0 – 10.0
R-C O-H	10.0 – 12.0

Table 3¹³C n.m.r. chemical shift data

Type of carbon	δ/ppm
$-\overset{\mid}{\mathbf{c}}-\overset{\mid}{\mathbf{c}}-$	5-40
$R - \overset{\mid}{\mathbf{C}} - Cl \text{ or Br}$	10-70
$\begin{array}{c c} R-C-\overset{ }{\mathbf{C}}-\\ & \\ O \end{array}$	20-50
$R - \stackrel{ }{\mathbf{c}} - N$	25-60
alcohols, -C-O- ethers or esters	50-90
c = c /	90-150
$R-C \equiv N$	110-125
	110-160
R— c — esters or acids	160 – 185
R- c aldehydes or ketones	190 – 220

The Periodic Table of the Elements

1	2											3	4	5	6	7	0
								ı									(18)
							1.0 H										4.0 He
(1)	(2)			Key		_	hydrogen 1					(13)	(14)	(15)	(16)	(17)	helium 2
6.9 Li	9.0 Be		relat	ive atomic symbol								10.8 B	12.0 C	14.0 N	16.0 O	19.0 F	20.2 Ne
lithium 3	beryllium 4		atomi	name c (proton) r								boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
23.0 Na	24.3 Mg			•		_						27.0 Al	28.1 Si	31.0 P	32.1 S	35.5 Cl	39.9 A r
sodium 11	magnesium 12	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
39.1 K	40.1 Ca	45.0 Sc	47.9 Ti	50.9 V	52.0 Cr	54.9 Mn	55.8 Fe	58.9 Co	58.7 Ni	63.5 Cu	65.4 Zn	69.7 Ga	72.6 Ge	74.9 As	79.0 Se	79.9 Br	83.8 Kr
potassium 19	calcium 20	scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
85.5 Rb	87.6 Sr	88.9 Y	91.2 Zr	92.9 Nb	96.0 Mo	[98] Tc	101.1 Ru	102.9 Rh	106.4 Pd	107.9 Ag	112.4 Cd	114.8 In	118.7 Sn	121.8 Sb	127.6 Te	126.9 I	131.3 Xe
rubidium 37	strontium 38	yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
132.9 Cs	137.3 Ba	138.9 La *	178.5 Hf	180.9 Ta	183.8 W	186.2 Re	190.2 Os	192.2 Ir	195.1 Pt	197.0 Au	200.6 Hg	204.4 Tl	207.2 Pb	209.0 Bi	[209] Po	[210] At	[222] Rn
caesium 55	barium 56	lanthanum 57	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
[223] Fr	[226] Ra	[227] Ac †	[267] Rf	[268] Db	[271] Sg	[272] Bh	[270] Hs	[276] Mt	[281] Ds	[280] Rg	Eler	nents with	atomic num	bers 112-1	16 have be	en reported	d but
francium 87	radium 88	actinium 89	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	darmstadtium 110	roentgenium 111			not fu	ılly authenti	cated		

* **58 – 71** Lanthanides

† 90 - 103 Actinides

140.1	140.9	144.2	[145]	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.1	175.0
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70	lutetium 71
232.0	231.0	238.0	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	[262]
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
90	91	92	93	94	95	96	97	98	99	100	101	102	103

1

Answer all the questions.

1 A student investigates the reaction between iodine, I_2 , and propanone, $(CH_3)_2CO$, in the presence of aqueous hydrochloric acid, HCl(aq).

The results of the investigation are shown below.

Rate-concentration graph

Results of initial rates experiments

experiment	[(CH ₃) ₂ CO(aq)] / mol dm ⁻³	[HC <i>t</i> (aq)] / mol dm ⁻³	initial rate / mol dm ⁻³ s ⁻¹
1	1.50×10^{-3}	2.00×10^{-2}	2.10×10^{-9}
2	3.00×10^{-3}	2.00×10^{-2}	4.20×10^{-9}
3	3.00×10^{-3}	5.00×10^{-2}	1.05 × 10 ⁻⁸

(a)	Determine the orders with	respect to I_2 ,	(CH ₃) ₂ CO	and HC1,	the rate	equation	and t	the	rate
	constant for the reaction.	_	V =						

Explain all of your reasoning.									

	[0]
	[9]
(b)	The student then investigates the reaction of hydrogen, H ₂ , and iodine monochloride, IC1.
	The equation for this reaction is shown below.
	$H_2(g) + 2ICl(g) \longrightarrow 2HCl(g) + I_2(g)$
	The rate equation for this reaction is shown below.
	$rate = k[H_2(g)] [ICl(g)]$
	Predict a possible two-step mechanism for this reaction. The first step should be the rate-determining step.
	step 1
	step 2[2]
	[Total: 11]

Turn over

2 Lattice enthalpies can be calculated indirectly using Born–Haber cycles.

Table 2.1 shows enthalpy changes needed to calculate the lattice enthalpy of sodium oxide, Na_2O .

letter	enthalpy change	energy /kJ mol ⁻¹
Α	1st electron affinity of oxygen	-141
В	2nd electron affinity of oxygen	+790
С	1st ionisation energy of sodium	+496
D	atomisation of oxygen	+249
E	atomisation of sodium	+108
F	formation of sodium oxide	-414
G	lattice enthalpy of sodium oxide	

Table 2.1

(a)	Define the term <i>lattice enthalpy</i> .
	T [*]

[3]

Turn over

4

- **(b)** The Born–Haber cycle below links the lattice enthalpy of sodium oxide with its enthalpy change of formation.
 - (i) On the Born–Haber cycle, write the correct letter from **Table 2.1** in each box.

(ii) Calculate the lattice enthalpy of sodium oxide, G.

		5
(d)	Unf	student wanted to determine the lattice enthalpy of sodium carbonate, Na_2CO_3 . ortunately this is very difficult to do using a similar Born–Haber cycle to that used for ium oxide in (b) .
	(i)	Suggest why this is very difficult.
		[1]
	(ii)	The student thought that he could determine the lattice enthalpy of $\mathrm{Na_2CO_3}$ using a Born–Haber cycle that links lattice enthalpy with enthalpy change of solution. The enthalpy change of solution of $\mathrm{Na_2CO_3}$ is exothermic.
		 Sketch this Born–Haber cycle, Explain how the lattice enthalpy of Na₂CO₃ could be calculated from the enthalpy changes in the cycle.
		[3]
		[Total: 14]

		s a transition element. Solid compound ions are formed.	s of cobalt are often complexes and in solution	۱,				
(a)	In it	In its complexes, the common oxidation numbers of cobalt are +2 and +3.						
	Cor	Complete the electron configurations of cobalt as the element and in the +3 oxidation state:						
	cob	palt as the element:	1s ² 2s ² 2p ⁶					
	cob	palt in the +3 oxidation state:	1s ² 2s ² 2p ⁶ [2	!]				
(b)		te one property of cobalt(II) and cobalt(ch is typical of ions of a transition eleme	III), other than their ability to form complex ions	3,				
			[1					
(c)	Cor	mplex ions contain ligands.						
	Sta	te the meaning of the term <i>ligand</i> .						
			[1]				
(d)	Αqι	ueous cobalt(II) sulfate, CoSO ₄ (aq), take	s part in the following reactions.					
		each reaction, state the formula of the t ction taking place.	ransition element species formed and the type o	of				
	(i)	Aqueous cobalt(II) sulfate, CoSO ₄ (aq),	reacts with aqueous sodium hydroxide.					
		transition element species formed:						
		type of reaction:	[2	<u>'</u>]				
	(ii)	Aqueous cobalt(II) sulfate, CoSO ₄ (aq),	reacts with concentrated hydrochloric acid.					
		transition element species formed:						
		type of reaction:	[2	!]				

(e) Cobalt(III) chloride, $CoCl_3$, reacts with ammonia to form a range of complexes. These complexes contain different amounts of ammonia. Information about these complexes is summarised below.

The complex ions **C** and **D** are stereoisomers.

complex	formula	formula of complex
Α	$CoCl_3(NH_3)_6$	[Co(NH ₃) ₆] ³⁺ 3C <i>l</i> ⁻
В	CoCl ₃ (NH ₃) ₅	$[Co(NH_3)_5Cl]^{2+}2Cl^{-}$
С	CoCl ₃ (NH ₃) ₄	[Co(NH ₃) ₄ C <i>l</i> ₂] ⁺ C <i>l</i> ⁻
D	CoCl ₃ (NH ₃) ₄	$[Co(NH_3)_4Cl_2]^+Cl^-$

(i) Complete the diagrams below to suggest possible structures for the complex ion in complexes A to D.

[4]

(ii) Chemists provided evidence for the formulae of these complexes from their reactions with aqueous silver nitrate. Aqueous silver nitrate reacts with aqueous halide ions in a precipitation reaction.

An excess of silver nitrate solution was reacted with 0.0100 mol of one of the complexes **A** to **D**. 2.868 g of a precipitate was formed.

Determine which complex was reacted.

In your answer you should explain how the result of the experiment we formula of the complex to be identified.	ould allow the
	[3]
	[Total: 15]

Turn over

[2]

s que	stion looks at acids, bases and buffer solutions.
Nitr Nitr	ic acid, HNO_3 , is a strong Brønsted–Lowry acid. ous acid, HNO_2 , is a weak Brønsted–Lowry acid with a K_a value of $4.43 \times 10^{-4}\mathrm{moldm^{-3}}$.
(i)	What is the difference between a strong acid and a weak acid?
	[1]
(ii)	What is the expression for the acid dissociation constant, $K_{\rm a}$, of nitrous acid, HNO $_2$?
	[1]
(iii)	Calculate the pH of 0.375 mol dm ⁻³ nitrous acid, HNO ₂ .
	Give your answer to two decimal places.
	pH =[2]
(iv)	A student suggests that an acid-base equilibrium is set up when nitric acid is mixed with nitrous acid.
	Complete the equation for the equilibrium that would be set up and label the conjugate acid-base pairs.
	$HNO_3 + HNO_2 \Longrightarrow \dots + \dots + \dots$
	Nitri Nitro (i)

(D)	Cai	cium nydroxide, Ca(OH) ₂ , is a strong Brønsted-Lowry base.	
	(i)	Explain what is meant by the term <i>Brønsted–Lowry base</i> .	
	(ii)	Calculate the pH of 0.0400 mol dm ⁻³ Ca(OH) ₂ .	
		Give your answer to two decimal places.	
		pH =	[3]
(c)	Αqι	ueous calcium hydroxide is added to nitrous acid, HNO ₂ .	
	Wri	te the overall equation and the ionic equation for the reaction that takes place.	
	ove	rall:	
	ioni	c:	[2]

- (d) Carbonic acid, H₂CO₃, is a weak Brønsted–Lowry acid formed when carbon dioxide dissolves in water. Healthy blood is buffered to a pH of 7.40. The most important buffer solution in blood is a mixture of carbonic acid and hydrogencarbonate ions, HCO₃⁻.
 - (i) Explain how the carbonic acid–hydrogencarbonate mixture acts as a buffer in the control of blood pH.

In you the pl	ır answer _. H.	you should	l explain h	ow equilib	rium allow	s the buffe	r solution to	control
				•••••				
								[5]

12

(ii)	Healthy blood at a pH of 7.40 has a hydrogencarbonate: carbonic acid ratio of 10.5:1
	A patient is admitted to hospital. The patient's blood pH is measured as 7.20.

Calculate the hydrogencarbonate: carbonic acid ratio in the patient's blood.

[5]

[Total: 22]

Turn over

[3]

[2]

- 5 Redox reactions can be used to generate electrical energy from electrochemical cells.
 - (a) A student carries out an investigation based on the redox systems shown in Table 5.1 below.

	redox system	E [⊕] /V
1	$Ni^{2+}(aq) + 2e^{-} \rightleftharpoons Ni(s)$	-0.25
2	$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$	+0.77
3	$Cr^{3+}(aq) + 3e^{-} \rightleftharpoons Cr(s)$	-0.74

Table 5.1

The student sets up two standard cells to measure two standard cell potentials.

- Cell A is based on redox systems 1 and 2.
- Cell B is based on redox systems 1 and 3.
- (i) Draw a labelled diagram to show how the student could have set up **Cell A**, based on redox systems **1** and **2**, to measure the standard cell potential.

(ii)	 For each standard cell below, what would be the standard cell potential? what would be the sign of the Ni electrode? 	
	Cell A based on redox system 1 and 2:	
	standard cell potential =	٧
	sign of Ni electrode, + or -=	
	Cell B based on redox system 1 and 3:	
	standard cell potential =	٧
	sign of Ni electrode, + or -=	

(b) The student left each cell in (a) connected for a length of time.

For each cell, the student weighed the nickel electrode before connecting the cell and after the cell had been disconnected.

The student made the following observations.

- In **Cell A**, the nickel electrode lost mass.
- In Cell B, the nickel electrode gained mass.
- In **both** cells, the measured cell potential slowly changed.

	Explain these observations. Include equations in your answer.	
		[3]
(c)	Nickel metal hydride cells (NiMH cells) are being developed for possible use in cars. In a NiMH cell, an alloy is used to absorb hydrogen as a metal hydride. For simplicity, the all can be represented as M and the metal hydride as MH.	loy
	The overall cell reaction in a NiMH cell is shown below.	
	$MH + NiO(OH) \rightarrow M + Ni(OH)_2$	
	The half-equation at one electrode is shown below.	
	$NiO(OH) + H_2O + e^- \rightarrow Ni(OH)_2 + OH^-$	
	(i) Deduce the half-equation at the other electrode.	
		[1]
	(ii) State a method, other than absorption, that is being developed to store hydrogen possible use as a fuel in cars.	for
		[1]
	[Total: 1	10]

Turn over

6 Free energy changes can be used to predict the feasibility of p	processes.
--	------------

(a) Write down the equation that links the free energy change with the enthalpy change and temperature.

.....[1]

(b) You are provided with equations for five processes.

For each process, predict the sign of ΔS .

process	sign of ΔS
$2CO(g) + O_2(g) \rightarrow 2CO_2(g)$	
$NaCl(s) + (aq) \rightarrow NaCl(aq)$	
$H_2O(I) \rightarrow H_2O(s)$	
$Mg(s) + H_2SO_4(aq) \rightarrow MgSO_4(aq) + H_2(g)$	
$CuSO_4(s) + 5H_2O(l) \rightarrow CuSO_4 \cdot 5H_2O(s)$	

[2]

(c) Ammonia can be oxidised as shown in the equation below.

$$4\mathrm{NH_3(g)} \ + \ 5\mathrm{O_2(g)} \ \longrightarrow \ 4\mathrm{NO(g)} \ + \ 6\mathrm{H_2O(g)}$$

Standard entropies are given in the table below.

substance	NH ₃ (g)	O ₂ (g)	NO(g)	H ₂ O(g)
S ^o / J K ⁻¹ mol ⁻¹	192	205	211	189

Calculate the standard entropy change, in J K⁻¹ mol⁻¹, for this oxidation of ammonia.

$$\Delta S^{\bullet} = \dots J K^{-1} mol^{-1} [2]$$

(d)	The exothermic reaction below occurs spontaneously at low temperatures but does not occur at very high temperatures.
	$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$
	Explain why.
	[2]
(e)	An ore of iron contains iron(III) oxide, Fe_2O_3 . Iron is extracted from this ore by heating with carbon. The equation below shows one of the reactions which takes place.
	$Fe_2O_3(s) + 3C(s) \rightarrow 2Fe(s) + 3CO(g)$
	$\Delta S = +543 \text{J K}^{-1} \text{mol}^{-1} \text{and} \Delta H = +493 \text{kJ} \text{mol}^{-1}$
	Calculate the minimum temperature at which this reaction becomes feasible.
	Show all your working.
	minimum temperature =[3]
	[Total: 10]

Turn over

17

 $\textbf{7} \quad \text{Dinitrogen tetroxide, N}_2 \text{O}_4(g), \text{ and nitrogen dioxide, N} \text{O}_2(g), \text{ coexist in the following equilibrium.}$

$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$
 $\Delta H = -57 \text{ kJ mol}^{-1}$

A chemist adds $4.00\,\mathrm{mol}\ \mathrm{NO_2}$ to a container with a volume of $2.00\,\mathrm{dm^3}$. The container is sealed, heated to a constant temperature and allowed to reach equilibrium.

The equilibrium mixture contains 3.20 mol NO₂.

(a) Calculate the value for $K_{\rm c}$ under these conditions.

[5]

(b)	The experiment is repeated but the pressure in the container is doubled.
	Explain in terms of $K_{\rm c}$ the effect on the concentrations of NO $_2$ and N $_2$ O $_4$ when the mixture has reached equilibrium.
	[3]
	[Total: 8]

Turn over

8 Haematite is the main ore of iron. The percentage of iron in a sample of haematite can be determined using the method below.

Method

- **Stage 1.** An excess of concentrated hydrochloric acid is added to a 3.25 g sample of haematite. The iron(III) oxide in the haematite reacts to form a solution containing Fe³⁺ ions.
- **Stage 2.** An excess of aqueous tin(II) chloride is added. Sn^{2+} reduces the Fe^{3+} present to Fe^{2+} . Excess Sn^{2+} is removed.
- **Stage 3.** The solution is diluted and made up to 250.0 cm³ in a volumetric flask.
- **Stage 4.** A 25.0 cm³ sample of this solution is pipetted into a conical flask.
- **Stage 5.** The solution in the conical flask is titrated with $0.0200\,\mathrm{mol\,dm^{-3}}$ aqueous potassium dichromate(VI), $\mathrm{K_2Cr_2O_7}$. The Fe²⁺ ions are oxidised to Fe³⁺ ions.
- Stage 6. Stages 4 and 5 are repeated to obtain an average titre of 26.5 cm³.

You are provided with the following electrode potentials.

You may need to use this information throughout this question.

$$Sn^{4+}(aq) + 2e^{-} \iff Sn^{2+}(aq)$$
 $E^{\theta} = +0.15V$ $Fe^{3+}(aq) + e^{-} \iff Fe^{2+}(aq)$ $E^{\theta} = +0.77V$ $Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^{-} \iff 2Cr^{3+}(aq) + 7H_2O(I)$ $E^{\theta} = +1.33V$ $Cl_2(aq) + 2e^{-} \iff 2Cl^-(aq)$ $E^{\theta} = +1.36V$ $MnO_4^-(aq) + 8H^+(aq) + 5e^{-} \iff Mn^{2+}(aq) + 4H_2O(I)$ $E^{\theta} = +1.51V$

(a)	Write an equation for the reaction between iron(III) oxide and concentrated hydrochloric acid,
	occurring in Stage 1.

.....[1]

(b) Write equations for the reactions involving iron ions in **Stages 2** and **5**.

Stage 2

Stage 5[2]

(c) Calculate the percentage by mass of iron in the haematite ore.

(d)	$\label{eq:percentage} percentage iron =$
	Suggest and explain why potassium dichromate(VI), $K_2Cr_2O_7$, is suitable for this titration whereas potassium manganate(VII), $KMnO_4$, is not suitable.
	[2]
	[Total: 10]
	END OF QUESTION PAPER