NOTICE TO CUSTOMER:

The sale of this product is intended for use of the original purchaser only and for use only on a single computer system. Duplicating, selling, or otherwise distributing this product is a violation of the law ; your license of the product will be terminated at any moment if you are selling or distributing the products.

No parts of this book may be reproduced, stored in a retrieval system, of transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

1 The transformation S is a shear with the y-axis invariant (i.e. a shear parallel to the y-axis). It is given that the image of the point $(1,1)$ is the point $(1,0)$.
(i) Draw a diagram showing the image of the unit square under the transformation S .
(ii) Write down the matrix that represents S .

2 Given that $\sum_{r=1}^{n}\left(a r^{2}+b\right) \equiv n\left(2 n^{2}+3 n-2\right)$, find the values of the constants a and b.

3 The cubic equation $2 x^{3}-3 x^{2}+24 x+7=0$ has roots α, β and γ.
(i) Use the substitution $x=\frac{1}{u}$ to find a cubic equation in u with integer coefficients.
(ii) Hence, or otherwise, find the value of $\frac{1}{\alpha \beta}+\frac{1}{\beta \gamma}+\frac{1}{\gamma \alpha}$.

4 The complex number 3-4i is denoted by z. Giving your answers in the form $x+\mathrm{i} y$, and showing clearly how you obtain them, find
(i) $2 z+5 z^{*}$,
(ii) $(z-i)^{2}$,
(iii) $\frac{3}{z}$.

5 The matrices \mathbf{A}, \mathbf{B} and \mathbf{C} are given by $\mathbf{A}=\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right), \mathbf{B}=\left(\begin{array}{l}4 \\ 0 \\ 3\end{array}\right)$ and $\mathbf{C}=\left(\begin{array}{lll}2 & 4 & -1\end{array}\right)$. Find
(i) $\mathrm{A}-4 \mathrm{~B}$,
(ii) BC ,
(iii) $\mathbf{C A}$.

6 The loci C_{1} and C_{2} are given by

$$
|z|=|z-4 \mathrm{i}| \quad \text { and } \quad \arg z=\frac{1}{6} \pi
$$

respectively.
(i) Sketch, on a single Argand diagram, the loci C_{1} and C_{2}.
(ii) Hence find, in the form $x+\mathrm{i} y$, the complex number represented by the point of intersection of C_{1} and C_{2}.

7 The matrix \mathbf{A} is given by $\mathbf{A}=\left(\begin{array}{cc}a & 3 \\ -2 & 1\end{array}\right)$.
(i) Given that \mathbf{A} is singular, find a.
(ii) Given instead that \mathbf{A} is non-singular, find \mathbf{A}^{-1} and hence solve the simultaneous equations

$$
\begin{align*}
a x+3 y & =1 \\
-2 x+y & =-1 \tag{5}
\end{align*}
$$

8 The sequence $u_{1}, u_{2}, u_{3}, \ldots$ is defined by $u_{1}=1$ and $u_{n+1}=u_{n}+2 n+1$.
(i) Show that $u_{4}=16$.
(ii) Hence suggest an expression for u_{n}.
(iii) Use induction to prove that your answer to part (ii) is correct.

9 (i) Show that $\alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)$.
(ii) The quadratic equation $x^{2}-5 x+7=0$ has roots α and β. Find a quadratic equation with roots α^{3} and β^{3}.

10 (i) Show that $\frac{2}{r}-\frac{1}{r+1}-\frac{1}{r+2}=\frac{3 r+4}{r(r+1)(r+2)}$.
(ii) Hence find an expression, in terms of n, for

$$
\begin{equation*}
\sum_{r=1}^{n} \frac{3 r+4}{r(r+1)(r+2)} \tag{6}
\end{equation*}
$$

(iii) Hence write down the value of $\sum_{r=1}^{\infty} \frac{3 r+4}{r(r+1)(r+2)}$.
(iv) Given that $\sum_{r=N+1}^{\infty} \frac{3 r+4}{r(r+1)(r+2)}=\frac{7}{10}$, find the value of N.

1 The matrix \mathbf{A} is given by $\mathbf{A}=\left(\begin{array}{ll}4 & 1 \\ 5 & 2\end{array}\right)$ and \mathbf{I} is the 2×2 identity matrix. Find
(i) $\mathbf{A}-3 \mathbf{I}$,
(ii) \mathbf{A}^{-1}.

2 The complex number $3+4 \mathrm{i}$ is denoted by a.
(i) Find $|a|$ and $\arg a$.
(ii) Sketch on a single Argand diagram the loci given by
(a) $|z-a|=|a|$,
(b) $\arg (z-3)=\arg a$.

3 (i) Show that $\frac{1}{r!}-\frac{1}{(r+1)!}=\frac{r}{(r+1)!}$.
(ii) Hence find an expression, in terms of n, for

$$
\begin{equation*}
\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\ldots+\frac{n}{(n+1)!} \tag{4}
\end{equation*}
$$

4 The matrix \mathbf{A} is given by $\mathbf{A}=\left(\begin{array}{ll}3 & 1 \\ 0 & 1\end{array}\right)$. Prove by induction that, for $n \geqslant 1$,

$$
\mathbf{A}^{n}=\left(\begin{array}{cc}
3^{n} & \frac{1}{2}\left(3^{n}-1\right) \tag{6}\\
0 & 1
\end{array}\right)
$$

5 Find $\sum_{r=1}^{n} r^{2}(r-1)$, expressing your answer in a fully factorised form.

6 The cubic equation $x^{3}+a x^{2}+b x+c=0$, where a, b and c are real, has roots $(3+\mathrm{i})$ and 2 .
(i) Write down the other root of the equation.
(ii) Find the values of a, b and c.

7 Describe fully the geometrical transformation represented by each of the following matrices:
(i) $\left(\begin{array}{ll}6 & 0 \\ 0 & 6\end{array}\right)$,
(ii) $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$,
(iii) $\left(\begin{array}{ll}1 & 0 \\ 0 & 6\end{array}\right)$,
(iv) $\left(\begin{array}{rr}0.8 & 0.6 \\ -0.6 & 0.8\end{array}\right)$.

8 The quadratic equation $x^{2}+k x+2 k=0$, where k is a non-zero constant, has roots α and β. Find a quadratic equation with roots $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$.

9 (i) Use an algebraic method to find the square roots of the complex number $5+12 \mathrm{i}$.
(ii) Find $(3-2 i)^{2}$.
(iii) Hence solve the quartic equation $x^{4}-10 x^{2}+169=0$.

10 The matrix \mathbf{A} is given by $\mathbf{A}=\left(\begin{array}{rrr}a & 8 & 10 \\ 2 & 1 & 2 \\ 4 & 3 & 6\end{array}\right)$. The matrix \mathbf{B} is such that $\mathbf{A B}=\left(\begin{array}{lll}a & 6 & 1 \\ 1 & 1 & 0 \\ 1 & 3 & 0\end{array}\right)$.
(i) Show that $\mathbf{A B}$ is non-singular.
(ii) Find $(\mathbf{A B})^{-1}$.
(iii) Find \mathbf{B}^{-1}.

1 The complex number $a+\mathrm{i} b$ is denoted by z. Given that $|z|=4$ and $\arg z=\frac{1}{3} \pi$, find a and b.

2 Prove by induction that, for $n \geqslant 1, \sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2}$.

3 Use the standard results for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^{2}$ to show that, for all positive integers n,

$$
\begin{equation*}
\sum_{r=1}^{n}\left(3 r^{2}-3 r+1\right)=n^{3} \tag{6}
\end{equation*}
$$

4 The matrix \mathbf{A} is given by $\mathbf{A}=\left(\begin{array}{ll}1 & 1 \\ 3 & 5\end{array}\right)$.
(i) Find \mathbf{A}^{-1}.

The matrix \mathbf{B}^{-1} is given by $\mathbf{B}^{-1}=\left(\begin{array}{rr}1 & 1 \\ 4 & -1\end{array}\right)$.
(ii) Find $(\mathbf{A B})^{-1}$.

5
(i) Show that

$$
\begin{equation*}
\frac{1}{r}-\frac{1}{r+1}=\frac{1}{r(r+1)} \tag{1}
\end{equation*}
$$

(ii) Hence find an expression, in terms of n, for

$$
\begin{equation*}
\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\ldots+\frac{1}{n(n+1)} \tag{3}
\end{equation*}
$$

(iii) Hence find the value of $\sum_{r=n+1}^{\infty} \frac{1}{r(r+1)}$.

6 The cubic equation $3 x^{3}-9 x^{2}+6 x+2=0$ has roots α, β and γ.
(i) (a) Write down the values of $\alpha+\beta+\gamma$ and $\alpha \beta+\beta \gamma+\gamma \alpha$.
(b) Find the value of $\alpha^{2}+\beta^{2}+\gamma^{2}$.
(ii) (a) Use the substitution $x=\frac{1}{u}$ to find a cubic equation in u with integer coefficients.
(b) Use your answer to part (ii) (a) to find the value of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$.

7 The matrix \mathbf{M} is given by $\mathbf{M}=\left(\begin{array}{ccc}a & 4 & 0 \\ 0 & a & 4 \\ 2 & 3 & 1\end{array}\right)$.
(i) Find, in terms of a, the determinant of \mathbf{M}.
(ii) In the case when $a=2$, state whether \mathbf{M} is singular or non-singular, justifying your answer. [2]
(iii) In the case when $a=4$, determine whether the simultaneous equations

$$
\begin{align*}
a x+4 y & =6 \\
a y+4 z & =8 \\
2 x+3 y+z & =1 \tag{3}
\end{align*}
$$

have any solutions.

8 The loci C_{1} and C_{2} are given by $|z-3|=3$ and $\arg (z-1)=\frac{1}{4} \pi$ respectively.
(i) Sketch, on a single Argand diagram, the loci C_{1} and C_{2}.
(ii) Indicate, by shading, the region of the Argand diagram for which

$$
\begin{equation*}
|z-3| \leqslant 3 \text { and } 0 \leqslant \arg (z-1) \leqslant \frac{1}{4} \pi \tag{2}
\end{equation*}
$$

9 (i) Write down the matrix, A, that represents an enlargement, centre $(0,0)$, with scale factor $\sqrt{2}$.
(ii) The matrix \mathbf{B} is given by $\mathbf{B}=\left(\begin{array}{rr}\frac{1}{2} \sqrt{2} & \frac{1}{2} \sqrt{2} \\ -\frac{1}{2} \sqrt{2} & \frac{1}{2} \sqrt{2}\end{array}\right)$. Describe fully the geometrical transformation represented by \mathbf{B}.
(iii) Given that $\mathbf{C}=\mathbf{A B}$, show that $\mathbf{C}=\left(\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right)$.
(iv) Draw a diagram showing the unit square and its image under the transformation represented by \mathbf{C}.
(v) Write down the determinant of \mathbf{C} and explain briefly how this value relates to the transformation represented by \mathbf{C}.

10 (i) Use an algebraic method to find the square roots of the complex number $16+30 \mathrm{i}$.
(ii) Use your answers to part (i) to solve the equation $z^{2}-2 z-(15+30 \mathrm{i})=0$, giving your answers in the form $x+\mathrm{i} y$.

1 Prove by induction that, for $n \geqslant 1, \sum_{r=1}^{n} r(r+1)=\frac{1}{3} n(n+1)(n+2)$.

2 The matrices \mathbf{A}, \mathbf{B} and \mathbf{C} are given by $\mathbf{A}=\left(\begin{array}{ll}1 & -4\end{array}\right), \mathbf{B}=\binom{5}{3}$ and $\mathbf{C}=\left(\begin{array}{rr}3 & 0 \\ -2 & 2\end{array}\right)$. Find
(i) $\mathbf{A B}$,
[2]
(ii) $\mathbf{B A}-4 \mathbf{C}$.

3 Find $\sum_{r=1}^{n}(2 r-1)^{2}$, expressing your answer in a fully factorised form.

4 The complex numbers a and b are given by $a=7+6 \mathrm{i}$ and $b=1-3 \mathrm{i}$. Showing clearly how you obtain your answers, find
(i) $|a-2 b|$ and $\arg (a-2 b)$,
(ii) $\frac{b}{a}$, giving your answer in the form $x+\mathrm{i} y$.
(a) Write down the matrix that represents a reflection in the line $y=x$.
(b) Describe fully the geometrical transformation represented by each of the following matrices:

$$
\begin{align*}
& \text { (i) }\left(\begin{array}{cc}
5 & 0 \\
0 & 1
\end{array}\right), \tag{2}\\
& \text { (ii) }\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \sqrt{3} \\
-\frac{1}{2} \sqrt{3} & \frac{1}{2}
\end{array}\right) \tag{2}
\end{align*}
$$

6 (i) Sketch on a single Argand diagram the loci given by
(a) $|z-3+4 i|=5$,
(b) $|z|=|z-6|$.
(ii) Indicate, by shading, the region of the Argand diagram for which

$$
\begin{equation*}
|z-3+4 i| \leqslant 5 \quad \text { and } \quad|z| \geqslant|z-6| \tag{2}
\end{equation*}
$$

7 The quadratic equation $x^{2}+2 k x+k=0$, where k is a non-zero constant, has roots α and β. Find a quadratic equation with roots $\frac{\alpha+\beta}{\alpha}$ and $\frac{\alpha+\beta}{\beta}$.

8 (i) Show that $\frac{1}{\sqrt{r+2}+\sqrt{r}} \equiv \frac{\sqrt{r+2}-\sqrt{r}}{2}$.
(ii) Hence find an expression, in terms of n, for

$$
\begin{equation*}
\sum_{r=1}^{n} \frac{1}{\sqrt{r+2}+\sqrt{r}} \tag{6}
\end{equation*}
$$

(iii) State, giving a brief reason, whether the series $\sum_{r=1}^{\infty} \frac{1}{\sqrt{r+2}+\sqrt{r}}$ converges.

9 The matrix \mathbf{A} is given by $\mathbf{A}=\left(\begin{array}{rrr}a & a & -1 \\ 0 & a & 2 \\ 1 & 2 & 1\end{array}\right)$.
(i) Find, in terms of a, the determinant of \mathbf{A}.
(ii) Three simultaneous equations are shown below.

$$
\begin{aligned}
a x+a y-z & =-1 \\
a y+2 z & =2 a \\
x+2 y+z & =1
\end{aligned}
$$

For each of the following values of a, determine whether the equations are consistent or inconsistent. If the equations are consistent, determine whether or not there is a unique solution.
(a) $a=0$
(b) $a=1$
(c) $a=2$

10 The complex number z, where $0<\arg z<\frac{1}{2} \pi$, is such that $z^{2}=3+4$ i.
(i) Use an algebraic method to find z.
(ii) Show that $z^{3}=2+11$ i.

The complex number w is the root of the equation

$$
w^{6}-4 w^{3}+125=0
$$

for which $-\frac{1}{2} \pi<\arg w<0$.
(iii) Find w.

1 Express $\frac{2+3 \mathrm{i}}{5-\mathrm{i}}$ in the form $x+\mathrm{i} y$, showing clearly how you obtain your answer.

2 The matrix \mathbf{A} is given by $\mathbf{A}=\left(\begin{array}{ll}2 & 0 \\ a & 5\end{array}\right)$. Find
(i) \mathbf{A}^{-1},
(ii) $2 \mathbf{A}-\left(\begin{array}{ll}1 & 2 \\ 0 & 4\end{array}\right)$.

3 Find $\sum_{r=1}^{n}\left(4 r^{3}+6 r^{2}+2 r\right)$, expressing your answer in a fully factorised form.

4 Given that \mathbf{A} and \mathbf{B} are 2×2 non-singular matrices and \mathbf{I} is the 2×2 identity matrix, simplify

$$
\begin{equation*}
\mathbf{B}(\mathbf{A B})^{-1} \mathbf{A}-\mathbf{I} \tag{4}
\end{equation*}
$$

5 By using the determinant of an appropriate matrix, or otherwise, find the value of k for which the simultaneous equations

$$
\begin{array}{r}
2 x-y+z=7 \\
3 y+z=4 \\
x+k y+k z=5 \tag{5}
\end{array}
$$

do not have a unique solution for x, y and z.

6 (i) The transformation P is represented by the matrix $\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$. Give a geometrical description of transformation P .
(ii) The transformation Q is represented by the matrix $\left(\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right)$. Give a geometrical description of transformation Q .
(iii) The transformation R is equivalent to transformation P followed by transformation Q. Find the matrix that represents R .
(iv) Give a geometrical description of the single transformation that is represented by your answer to part (iii).

7 It is given that $u_{n}=13^{n}+6^{n-1}$, where n is a positive integer.
(i) Show that $u_{n}+u_{n+1}=14 \times 13^{n}+7 \times 6^{n-1}$.
(ii) Prove by induction that u_{n} is a multiple of 7 .

8 (i) Show that $(\alpha-\beta)^{2} \equiv(\alpha+\beta)^{2}-4 \alpha \beta$.
The quadratic equation $x^{2}-6 k x+k^{2}=0$, where k is a positive constant, has roots α and β, with $\alpha>\beta$.
(ii) Show that $\alpha-\beta=4 \sqrt{2} k$.
(iii) Hence find a quadratic equation with roots $\alpha+1$ and $\beta-1$.

9
(i) Show that $\frac{1}{2 r-3}-\frac{1}{2 r+1}=\frac{4}{4 r^{2}-4 r-3}$.
(ii) Hence find an expression, in terms of n, for

$$
\begin{equation*}
\sum_{r=2}^{n} \frac{4}{4 r^{2}-4 r-3} \tag{6}
\end{equation*}
$$

(iii) Show that $\sum_{r=2}^{\infty} \frac{4}{4 r^{2}-4 r-3}=\frac{4}{3}$.

10 (i) Use an algebraic method to find the square roots of the complex number $2+\mathrm{i} \sqrt{5}$. Give your answers in the form $x+\mathrm{i} y$, where x and y are exact real numbers.
(ii) Hence find, in the form $x+\mathrm{i} y$ where x and y are exact real numbers, the roots of the equation

$$
\begin{equation*}
z^{4}-4 z^{2}+9=0 . \tag{4}
\end{equation*}
$$

(iii) Show, on an Argand diagram, the roots of the equation in part (ii).
(iv) Given that α is the root of the equation in part (ii) such that $0<\arg \alpha<\frac{1}{2} \pi$, sketch on the same Argand diagram the locus given by $|z-\alpha|=|z|$.

