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Mark Scheme 
 

Question 
Number Scheme Marks 

Q1 
Calculate 

0

2sin1 1.683dy
dx

⎛ ⎞ = =⎜ ⎟
⎝ ⎠

 
 

B1 

  
At       x = 0.1,  1y  = 1 + 0.1 ( 2 sin1)   = 1.1683 or awrt 

 
M1 A1 

 
            x = 0.2,  2y  = 1.1683 + 0.1 ( 20.1 2sin1.1683+ )    = 1.3533  awrt  M1 A1 

[5] 
 
 
 
 
 
 
 
 

 
B1 may be implied 
3dp lose last A1 
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Question 
Number Scheme Marks 

 
Q2             (a) 
 

               
2 2d 3 ln

d
y x x x
x
= +     

 
M1 A1,  

 

 2

2

d 6 ln 5
d

y x x x
x

= + , and 
3

3

d 6ln 11
d

y x
x

= +  

 

 
M1A1ft, A1 

(5) 

    
   (b) 

 

               
  Use of 3 2 31 1

2 6ln (1) ( 1) (1) ( 1) (1) ( 1) (1)x x f x f x f x f′ ′′ ′′′= + − + − + −           
 

 
M1  

 

 Evaluates (1),   (1),   (1) and  (1)f f f f′ ′′ ′′′  M1 

 So 3 2 35 11
2 6ln ( 1) ( 1) ( 1)x x x x x= − + − + −  A1          (3) 

[8] 
 
 
 
 
 
 
 
 
 
 

(a) M1 is attempt at derivative involving product rule  
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Question 
Number Scheme Marks 

 
Q3             (a) 

            
5cos5 Re (cos sin )iθ θ θ⎡ ⎤= +⎣ ⎦  

 

 5 3 2 2 4 4cos 10cos  i sin 5cos  i sinθ θ θ θ θ= + +  M1A1 

  
            5 3 2 4cos 10cos  sin 5cos  sinθ θ θ θ θ= − +  

 
M1 

             5 3 2 2 2cos 10cos  (1 cos ) 5cos  (1 cos )θ θ θ θ θ= − − + −   
M1 
 

   5 3cos5 16cos 20cos 5cosθ θ θ θ= − +                       (  D ) A1 
(5) 

(b) 
    

5 332 40 10 1 0x x x− + + =  ⇒ 5 3 1
216 20 5x x x− + = −  so solve 

1
2cos5θ = −  

 
M1 
 

 25
3
πθ = ,      and 4

3
π  (ignore extra solutions) 

 
A1,  A1ft 
 

 
So x = cosθ,  where  2 their 

15
πθ =  or 4

15
π  

 

 
M1  

 So x = 0.914 and 0.669 A1, A1  
(6) 

[11] 

  
In part (b) award M1 for +/- ½ 
A1 ft is for second solution consistent with first 
Accept answers which round to.. 
Ignore wrong or extra answers. 
Lose final A1 for 2dp 
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Question 
Number Scheme Marks 

 
Q4             (i) 

 

( 2)

1  0  0      1         0      0
1  1  0               1      0
3  2  1    2      1

n

n n
n

n+

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=
1  0  0
1  1  0
3  2  1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 when n = 1  ∴ true for n = 1 

 
 
 
B1 

 

Assume true for n = k, then 
( 2)

1  0  0      1         0      0
1  1  0               1      0
3  2  1    2      1

k

k k
k

k+

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
 

 1

( 2)

1  0  0 1  0  0      1         0      0

1  1  0 1  1  0               1      0

3  2  1 3  2  1    2      1

k

k k

k

k

+

+

=

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 or 

1

( 2)

1  0  0      1         0      0 1  0  0

1  1  0               1      0 1  1  0

3  2  1    2      1 3  2  1

k

k k

k

k

+

+

=

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
 
M1 

 
 

 
 

{3 2 ( 2)} 2 2

11  0  0      1                   0          0      1             0         0
i.e. 1  1  0      1+               1           0      1+          1  

3  2  1         1k k k k

k

k k
+ + + +

+
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ 2

{3 4 } 2 2

       0
        1k k k+ + +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 

 
 
M1 

 

                  
2 2( 1)( 3)

      1               0        0
     1+            1         0

        1kk k

k
++ +

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠ ( 2)

    1         0      0
             1      0

  2      1n n
n

n+

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

with n = k+1 
 
A1 

 

 (∴ true for n = k + 1 if true for n = k) ∴ true for n +∈Z by induction.  A1  
(5) 

(ii) Let nu = 3 12 5n+ + , then 1u  = 21 which  is divisible by 7  ∴ true for n = 1 B1 

 Assume true for n = k,  then ku = 3 12 5k+ + is divisible by 7  

 Consider 1ku +  - ku  = 3( 1) 1(2 5)k+ + + - ( 3 12 5k+ + ) = 3 1 3 3 12 (2 1) 2 7k k+ +− = ×  M1, M1, A1 

 As ku  and 1ku +  - ku  are both divisible by 7 ∴ 1ku +  is divisible by 7  

 (∴ true for n = k + 1 if true for n = k) ∴ true for n +∈Z by induction A1 cso 
(5) 

[10] 
 

Alternatives 
for (ii) 

 
 

 
 
 

 

Note: Accuracy marks only depend on first M1 
Show that 0 7u = satisfies condition for n = 0, could earn first B1 
 
 
Also ku = 3 12 5k+ + is divisible by 7 ⇒  3 12 5k+ + = 7k ⇒ 3 12 7 5k k+ = −  
So 3 42 5 8(7 5) 5k k+ + = − +  = 7(8k - 5)   So divisible by 7 
∴ true for n +∈Z by induction 

 
 
 
 
 
M1 
 
M1 A1 
A1 cso 
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Question 
Number Scheme Marks 

 
Q5             (a) 

  =a×b
 

  1 7 9
1 3 1−

i j k
= –20i - 10j +10k 10(2 )= − −i + j k  

 
 
M1 A1 
 

(2) 
 

(b) 
 
The plane has equation r.n = a.n , which is  – 2x - y + z =  
 

 
M1  

 
 i.e. 2x + y  – z = 4  o.a.e. A1 

 
(2) 

(c)  The line 1l  passes through the point (1, 0, -2) and this lies in the plane 
 

B1 
 

 
  1l  has direction a which is perpendicular to a×b so 1l  is parallel to the 

plane .(Thus 1l  lies in the plane.) 
Or 2(1 ) 7 (9 2) 4λ λ λ+ + − − =  for all values of λ , so line lies in plane 

B1 
(2) 

 
(d) 

 
r.(2i + j - k) = (i + j + k) . (2i + j - k) 
 

 
 
M1 

 

  
i.e. 2x + y -  z = 2  o.a.e 

 
A1 

(2) 
(e) 

Either Distance from 2x + y - z =4 to origin is 
2 2 2

4 4
(2 ( 1) 1 ) 6

=
+ − +

 
 
M1 

 
 Or Distance from 2x + y - z =2 to origin is 

2 2 2 6
2 2

(2 ( 1) 1 )
=

+ − +
 

 
 
 

 
So distance between the planes is 

6 6
4 2 2
6
− =  6

3
⎛ ⎞
=⎜ ⎟⎜ ⎟
⎝ ⎠

 
 
M1, A1o.a.e 

(3) 
 

[11] 
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Question 
Number Scheme Marks 

 
Q6             (a) 

 
The eigenvalues satisfy the equation 0λ− =M I  
so ( 11 – λ)( 1 – λ) – 75 = 0 
 

 
 
M1  A1 

 2 12 64 0λ λ∴ − − =  so  λ = 16 or –4. M1 A1 
(4) 

(b) 
 λ = 16 :

  11     -5 3

-5 3      1

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

16
x x
y y

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
  so an eigenvector is 

3
1

k
⎛ ⎞
⎜ ⎟
−⎝ ⎠

  

 

 
M1 A1 
 

 

 
λ = -4: 

 11     -5 3

-5 3      1

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

4
x x
y y

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
  so an eigenvector is 

  1

3
k
⎛ ⎞
′⎜ ⎟
⎝ ⎠

 
 
M1 A1 
 

(4) 
(c) 

    P =    

3 1     
2 2 , 1 1
1 3   

2 2

k k
where k and k

k k

⎛ ⎞
′⎜ ⎟

⎜ ⎟ ′= ± = ±
⎜ ⎟− ′⎜ ⎟
⎝ ⎠

 

 
 
M1, A1 
 

(2) 

(d) 

1

3 1   
2 2

1 3     
2 2

−

⎛ ⎞
−⎜ ⎟

⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

P  o.e. 

 
 
M1 A1ft 
 
 
 

 
 

-1P MP = 

3 1 3 1             11     -5 32 2 2 2
1 3 5 3      1 1 3          
2 2 2 2

⎛ ⎞ ⎛ ⎞
−⎜ ⎟ ⎜ ⎟⎛ ⎞

⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 = 
16 0
0 4
⎛ ⎞
⎜ ⎟−⎝ ⎠

   
   

 

 
M1 A1ft 

(4) 
 

 
[14]  
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Question 
Number Scheme Marks 

 
Q7             (a) 

 
2 2 2 2( 4) ( 4) 4{( 1) ( 1) }x y x y− + + = − + +  

  

 
M1 A1 

 

 2 23 3 24x y∴ + =  A1 
 

 This is a circle with 2 8r =  
 

B1 
  

 So z k=  and k = 2 2  B1 
(5) 

(b) 

 

 
 
B1 
 
 
B1 
B1 

(3) 

(c)  

 

 
 
M1 
 
 
 
A1ft 
 
 
A1ft 

(3) 

(d) Let i8ez θ= , then 8( )i iw e eθ θ−= +  
                                      

.M1 
 

                         i.e. 2 8(cos )w θ=   
A1 ft on r 

 So the locus is part of the real axis , i.e. Im (w) =0  
B1 

 And as –1 < cos < 1, so the end points are 4 2w =  and 4 2w = −  M1 A1 

   
 (5) 

 
[16] 

 Alternative method (d) 
Let z = x + i y and put 2 2 8x y+ =  to give w = 2x + 0 for M1 A1 
 

 

 

Circle centre O 
 
Point at (1, -1) 
Point at (4,-4) 

Method of 
solution: e.g. 
diameter shown 
 
       4 2 r−  

         
4 2 r+   
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