NOTICE TO CUSTOMER: The sale of this product is intended for use of the original purchaser only and for use only on a single computer system. Duplicating, selling, or otherwise distributing this product is a violation of the law; your license of the product will be terminated at any moment if you are selling or distributing the products. No parts of this book may be reproduced, stored in a retrieval system, of transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. #### Answer all questions. 1 (a) Show that $$\frac{1}{r^2} - \frac{1}{(r+1)^2} = \frac{2r+1}{r^2(r+1)^2}$$ (2 marks) (b) Hence find the sum of the first *n* terms of the series $$\frac{3}{1^2 \times 2^2} + \frac{5}{2^2 \times 3^2} + \frac{7}{3^2 \times 4^2} + \dots$$ (4 marks) 2 The cubic equation $$x^3 + px^2 + qx + r = 0$$ where p, q and r are real, has roots α , β and γ . (a) Given that $$\alpha + \beta + \gamma = 4$$ and $\alpha^2 + \beta^2 + \gamma^2 = 20$ find the values of p and q. (5 marks) (b) Given further that one root is 3 + i, find the value of r. (5 marks) (2 marks) 3 The complex numbers z_1 and z_2 are given by $$z_1 = \frac{1+i}{1-i}$$ and $z_2 = \frac{1}{2} + \frac{\sqrt{3}}{2}i$ (a) Show that $z_1 = i$. (b) Show that $|z_1| = |z_2|$. (2 marks) (c) Express both z_1 and z_2 in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \leqslant \pi$. (3 marks) (d) Draw an Argand diagram to show the points representing z_1 , z_2 and $z_1 + z_2$. (2 marks) (e) Use your Argand diagram to show that $$\tan\frac{5}{12}\pi = 2 + \sqrt{3} \tag{3 marks}$$ 4 (a) Prove by induction that $$2 + (3 \times 2) + (4 \times 2^{2}) + \ldots + (n+1) 2^{n-1} = n 2^{n}$$ for all integers $n \ge 1$. (6 marks) (b) Show that $$\sum_{r=n+1}^{2n} (r+1) 2^{r-1} = n 2^n (2^{n+1} - 1)$$ (3 marks) 5 The complex number z satisfies the relation $$|z + 4 - 4i| = 4$$ - (a) Sketch, on an Argand diagram, the locus of z. (3 marks) - (b) Show that the greatest value of |z| is $4(\sqrt{2}+1)$. (3 marks) - (c) Find the value of z for which $$\arg(z+4-4\mathrm{i}) = \frac{1}{6}\pi$$ Give your answer in the form a + ib. (3 marks) Turn over for the next question 6 It is given that $z = e^{i\theta}$. (a) (i) Show that $$z + \frac{1}{z} = 2\cos\theta \tag{2 marks}$$ (ii) Find a similar expression for $$z^2 + \frac{1}{z^2}$$ (2 marks) (iii) Hence show that $$z^{2} - z + 2 - \frac{1}{z} + \frac{1}{z^{2}} = 4\cos^{2}\theta - 2\cos\theta$$ (3 marks) (b) Hence solve the quartic equation $$z^4 - z^3 + 2z^2 - z + 1 = 0$$ giving the roots in the form a + ib. (5 marks) 7 (a) Use the definitions $$\sinh \theta = \frac{1}{2}(e^{\theta} - e^{-\theta})$$ and $\cosh \theta = \frac{1}{2}(e^{\theta} + e^{-\theta})$ to show that: (i) $$2 \sinh \theta \cosh \theta = \sinh 2\theta$$; (2 marks) (ii) $$\cosh^2 \theta + \sinh^2 \theta = \cosh 2\theta$$. (3 marks) (b) A curve is given parametrically by $$x = \cosh^3 \theta, \quad y = \sinh^3 \theta$$ (i) Show that $$\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2 = \frac{9}{4}\sinh^2 2\theta \cosh 2\theta \tag{6 marks}$$ (ii) Show that the length of the arc of the curve from the point where $\theta=0$ to the point where $\theta=1$ is $$\frac{1}{2} \left[\left(\cosh 2 \right)^{\frac{3}{2}} - 1 \right] \tag{6 marks}$$ ### END OF QUESTIONS # **Practice 2** | | | Lea | |--|-----|------| | 1. The hyperbola <i>H</i> has equation $x^2 - 4y^2 = 4a^2, a > 0$ | | Diai | | | | | | (a) Find the eccentricity of H . | (3) | | | | (-) | | | Given that $x = 10$ is an equation of a directrix of H , | | | | (b) find the value of a. | (2) | | | | (-) | Question 1 continued | 1 | Leave
blank | |----------------------|---|----------------| Q | 1 | | | | | | | Leav
blank | |--|---------------| | 2. A curve C has intrinsic equation $s = f(\psi)$. The radius of curvature at any point P on C is $\tan \psi$, where ψ is the angle between the tangent to C at P and the positive x-axis and | | | $0 \leqslant \psi < \frac{\pi}{2}$. | | | | | | Taking $s = 0$ at $\psi = \frac{\pi}{4}$, find $f(\psi)$. | | | (5) | Question 2 continued | | Leav | |----------------------|-----------------|------| | Question 2 continued | Q2 | | | (Total 5 marks) | | | $\sinh 2x = 2\sinh x \cosh x$ (2) (b) Hence find the exact values of x for which $\sinh 2x = 6\sinh^2 x + 7\sinh x$ (7) | (a) Starting from definitions of $\cosh x$ and $\sinh x$ in terms of exponential | aio, prove mai | |--|--|----------------| | (b) Hence find the exact values of x for which $\sinh 2x = 6\sinh^2 x + 7\sinh x$ | $\sinh 2x = 2\sinh x \cosh x$ | (2) | | $\sinh 2x = 6\sinh^2 x + 7\sinh x$ | | (2) | | $\sinh 2x = 6\sinh^2 x + 7\sinh x$ | (b) Hence find the exact values of x for which | | | | | | | | | (7) | Overtion 2 continued | blan | |----------------------|--------| | Question 3 continued | 02 | | |
Q3 | | $I_n = \int (\ln x)^n \mathrm{d}x, \ n \geqslant 0$ | | |---|-----| | (a) Show that | | | $I_n = x(\ln x)^n - nI_{n-1}, \ n \geqslant 1$ | (4) | | (b) Hence find the exact value of $\int_{1}^{e} (\ln x)^3 dx$. | (6) | Question 4 continued | Leav
blanl | |----------------------|---------------| Question 4 continued | Leave
blank | |----------------------|----------------| Lea
bla | ave
ink | |---------------------|------------------|------------| | uestion 4 continued | Q | 4 | | | | | | | (Total 10 marks) | | Leave blank 5. Figure 1 The curve C, with equation $y = \cosh 3x - 4x$, has a minimum point A, as shown in Figure 1. (a) Use calculus to find the x-coordinate of A. Give your answer in terms of a natural logarithm. **(5)** **(6)** The region R, shown shaded in Figure 1, is bounded by C, the x-axis, the y-axis and the line through A parallel to the y-axis. | (b) Show that the area of R is $\frac{2}{9} \left[2 - (\ln 3)^2 \right]$. | |---| |---| | Question 5 continued | Leav
blank | |----------------------|---------------| Question 5 continued | Leave
blank | |----------------------|----------------| Question 5 continued | Le | eav
lank | |----------------------|------------------|-------------| Q5 | | | (Total 11 marks) | | | (| 6. (a) Using the substitution | on $x = \frac{a}{u}$, or otherwise, find | Leave
blank | |---|--------------------------------------|--|----------------| | | | $\int \frac{1}{x\sqrt{a^2-x^2}} \mathrm{d}x$ | | | | (b) Hence find | $\int_3^4 \frac{1}{x\sqrt{(25-x^2)}} \mathrm{d}x$ | (6) | | | giving your answer i | $\int_3^3 x \sqrt{(25 - x^2)}$ in the form $a \ln b$, where a and b are rational numbers. | | | - | | | (5) | | - |
			-					-					-					-					-					-					-					-					_	16				Question 6 continued	Leave blank		----------------------	----------------																																																																	Question 6 continued	Leave blank		----------------------	----------------																																																											Question 6 continued		Leave blank		----------------------	------------------	----------------																																																							(Total 11 marks)	Q6		7. Given that $y = \sin(k \arcsin 2x)$, where k is a con-	nstant, show that		---	-------------------		(a) $(1-4x^2)\left(\frac{dy}{dx}\right)^2 = 4k^2 (1-y^2)$	(5)		(b) $(1-4x^2)\frac{d^2y}{dx^2} - 4x\frac{dy}{dx} + 4k^2y = 0$	(5)																																																																																						Question 7 continued	Leave blank		----------------------	----------------																																																											Question 7 continued	Leave		----------------------	-------																																																		Question 7 continued	Leave blank		----------------------	----------------																																																																					Q7 10 marks)				Leave blank		----	---	-------------		8.	The parabola C has equation $y^2 = 4ax$, where $a > 0$, and the line l has equation	Oldrik			y = mx + c. Given that l is a tangent to C ,				(a) show that $c = \frac{a}{m}$.				m (4)				The point P has coordinates $(4a, 5a)$.				(b) Find equations of the two tangents from <i>P</i> to <i>C</i> .				(5))			The tangents from P to C meet C at the points R and Q .				(c) Find the distance <i>RQ</i> .				(5)																																																																																											Question 8 continued	Leav blan		----------------------	--------------																																																																																						Question 8 continued	Lea bla		----------------------	------------																																																																													Question 8 continued	Leav blan		----------------------	--------------																																																																																						Question 8 continued		Lea bla		----------------------	---------------------------	------------		Question o continueu																																																																																																																						C			(Total 14 marks)	1			TOTAL FOR PAPER: 75 MARKS		Copyright © mppe.org.uk and its license. All Rights Reserved #### Answer all questions. 1 (a) Given that $$4\cosh^2 x = 7\sinh x + 1$$ find the two possible values of $\sinh x$. (4 marks) - (b) Hence obtain the two possible values of x, giving your answers in the form $\ln p$. (3 marks) - 2 (a) Sketch on one diagram: - (i) the locus of points satisfying	z-4+2i	=2; (3 marks) (ii) the locus of points satisfying	z	=	z - 3 - 2i	. (3 marks) (b) Shade on your sketch the region in which both $$	z-4+2i	\leq 2$$ and $$	z	\leq	z - 3 - 2i	$$ (2 marks) 3 The cubic equation $$z^3 + 2(1 - i)z^2 + 32(1 + i) = 0$$ has roots α , β and γ . - (a) It is given that α is of the form ki, where k is real. By substituting z = ki into the equation, show that k = 4. - (b) Given that $\beta = -4$, find the value of γ . (2 marks) 4 (a) Given that $y = \operatorname{sech} t$, show that: (i) $$\frac{\mathrm{d}y}{\mathrm{d}t} = -\mathrm{sech}\,t\,\tanh t$$; (3 marks) (ii) $$\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = \mathrm{sech}^2 t - \mathrm{sech}^4 t$$. (2 marks) (b) The diagram shows a sketch of part of the curve given parametrically by $$x = t - \tanh t$$ $y = \operatorname{sech} t$ The curve meets the y-axis at the point K, and P(x, y) is a general point on the curve. The arc length KP is denoted by s. Show that: (i) $$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = \tanh^2 t$$; (4 marks) (ii) $$s = \ln \cosh t$$; (3 marks) (iii) $$y = e^{-s}$$. (2 marks) (c) The arc KP is rotated through 2π radians about the x-axis. Show that the surface area generated is $$2\pi(1 - e^{-s}) \tag{4 marks}$$ # Turn over for the next question 5 (a) Prove by induction that, if n is a positive integer, $$(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta \qquad (5 \text{ marks})$$ - (b) Find the value of $\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^6$. (2 marks) - (c) Show that $$(\cos \theta + i \sin \theta)(1 + \cos \theta - i \sin \theta) = 1 + \cos \theta + i \sin \theta$$ (3 marks) (d) Hence show that $$\left(1 + \cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^6 + \left(1 + \cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)^6 = 0$$ (4 marks) - 6 (a) Find the three roots of $z^3=1$, giving the non-real roots in the form $e^{i\theta}$, where $-\pi < \theta \le \pi$. - (b) Given that ω is one of the non-real roots of $z^3 = 1$, show that $$1 + \omega + \omega^2 = 0 (2 marks)$$ (c) By using the result in part (b), or otherwise, show that: (i) $$\frac{\omega}{\omega+1} = -\frac{1}{\omega}$$; (2 marks) (ii) $$\frac{\omega^2}{\omega^2 + 1} = -\omega; \qquad (1 \text{ mark})$$ (iii) $$\left(\frac{\omega}{\omega+1}\right)^k + \left(\frac{\omega^2}{\omega^2+1}\right)^k = (-1)^k 2\cos\frac{2}{3}k\pi$$, where k is an integer. (5 marks) 7 (a) Use the identity $\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$ with A = (r + 1)x and B = rx to show that $$\tan rx \tan(r+1)x = \frac{\tan(r+1)x}{\tan x} - \frac{\tan rx}{\tan x} - 1$$ (4 marks) (b) Use the method of differences to show that $$\tan\frac{\pi}{50}\tan\frac{2\pi}{50} + \tan\frac{2\pi}{50}\tan\frac{3\pi}{50} + \dots + \tan\frac{19\pi}{50}\tan\frac{20\pi}{50} = \frac{\tan\frac{2\pi}{5}}{\tan\frac{\pi}{50}} - 20$$ (5 marks) ### END OF QUESTIONS # **Practice 4**	(4)	$\frac{\mathrm{d}}{\mathrm{d}x} \Big[\ln(\tanh x) \Big] = 2 \operatorname{cosech} 2x, \qquad x > 0.$			-----	---	-----			dx	(4)																																																																																						Question 1 continued		Leave blank		----------------------	-----------------	----------------																																																											(Total 4 marks)	Q1		Find the values of x for which			--	-----		$8\cosh x - 4\sinh x = 13,$			giving your answers as natural logarithms.				(6)																																																																																			Question 2 continued		Leav blan		----------------------	-----------------	--------------																																																																																																																Q2			(Total 6 marks)			3. Show that		eave lank		---	-----	--------------		$\int_{5}^{6} \frac{3+x}{\sqrt{(x^{2}-9)}} dx = 3\ln\left(\frac{2+\sqrt{3}}{3}\right) + 3\sqrt{3} - 4.$					(7)																																																																																																							Question 3 continued		Lea blar		----------------------	-----------------	-------------																																																																																												03			(Total 7 marks)	Q3				Leave		----	---	-------		4.	The curve C has equation	blank			$y = \operatorname{arsinh}(x^3), \qquad x \geqslant 0.$				The point <i>P</i> on <i>C</i> has <i>x</i> -coordinate $\sqrt{2}$.				(a) Show that an equation of the tangent to C at P is				$y = 2x - 2\sqrt{2} + \ln(3 + 2\sqrt{2}).$				$y = 2x - 2(2 + \ln(3 + 2(2))). \tag{5}$				The tangent to C at the point Q is parallel to the tangent to C at P .				(b) Find the <i>x</i> -coordinate of <i>Q</i> , giving your answer to 2 decimal places.				(5)																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																													
																																																																		Question 4 continued		Leav blanl		----------------------	------------------	---------------																																																																																																																								Q4			(Total 10 marks)			. Given that			--	-----		$I_n = \int_0^{\pi} e^x \sin^n x dx, \qquad n \geqslant 0,$						(a) show that, for $n \ge 2$,			$I_n = \frac{n(n-1)}{n^2 + 1} I_{n-2}.$	(8)		(b) Find the exact value of I_4 .	(4)			(4)																																																																							Question 5 continued	Leav blan		----------------------	--------------																																																																																			Question 5 continued	Leav blan		----------------------	--------------																																															Question 5 continued		Leave		----------------------	------------------	-------																																																															(Total 12 marks)	Q5	Leave blank 6. Figure 1 Figure 1 shows the curve C with equation $$y = \frac{1}{10} \cosh x \arctan (\sinh x),$$ $x \ge 0$ The shaded region R is bounded by C, the x-axis and the line x = 2. (a) Find $\int \cosh x \arctan (\sinh x) dx$. **(5)** (b) Hence show that, to 2 significant figures, the area of R is 0.34 **(2)**	Question 6 continued	Leave blank		----------------------	----------------																																												Question 6 continued	Leave blank		----------------------	----------------																																																																																														Leave blank		---------------------------------------	----------------	----------------		Question 6 continued																																																																																										Q6		· · · · · · · · · · · · · · · · · · ·	Total 7 marks)	20		The hyperbola H has equation			--	------------		$\frac{x^2}{16} - \frac{y^2}{9} = 1.$			(a) Show that an equation for the normal to H at a point P (4 sec t , 3 tan t) is			$4x\sin t + 3y = 25\tan t.$	(6)			(6)		The point S , which lies on the positive x -axis, is a focus of H . Given that PS is particle y -axis and that the y -coordinate of P is positive,	arallel to		(b) find the values of the coordinates of <i>P</i> .	(5)			(5)		Given that the normal to H at this point P intersects the x -axis at the point R ,			(c) find the area of triangle <i>PRS</i> .	(3)			(3)																																																																		Leave blank		----------------------	----------------		Question 7 continued																																																																								Question 7 continued	Leave blank		----------------------	----------------																																																		Question 7 continued		Leav blanl		----------------------	------------------	---------------																																																																																																												Q7			(Total 14 marks)			8.	The curve C has parametric equations			----	--	--		0.					$x = 3(t + \sin t),$ $y = 3(1 - \cos t),$ $0 \le t < \pi.$				(a) Show that $\frac{dy}{dx} = \tan \frac{t}{2}$. (3)				The arc length s of C is measured from the origin O .				(b) Show that $s = 12\sin\frac{t}{2}$. (4)				(c) Hence write down the intrinsic equation of C in the form $s = f(\psi)$. (1)				The point P lies on C and the arc OP of C has length L . The arc OP is rotated through 2π radians about the x -axis.				(d) Show that the area of the curved surface generated is given by				πL^3				$\frac{\pi L^3}{36}. (7)$																																																																																																			Question 8 continued	Leave blank		----------------------	----------------																																																								Question 8 continued	Leave blank		----------------------	----------------																																																																																															Question 8 continued	Leave blank		----------------------	----------------																																																																																			Question 8 continued		Leav blan		----------------------	------------------	--------------		zuestion o continueu																																																																																																										Q			(Total 15 marks)		## Practice 5	4	(: 12.)2	L t		----	---	--------		1.	$y = (\operatorname{arsinh} 2x)^2$				Find the exact value of $\frac{dy}{dx}$ at $x = \frac{1}{2}$, giving your answer in the form $a \ln b$,				where a and b are real numbers.				(5)																																																																																																																																											Question 1 continued	Leave blank		----------------------	----------------																																												(Tot	tal 5 marks)		2.	The ellipse E has equation $\frac{x^2}{a^2} + \frac{y^2}{8} = 1$, where $a > 2\sqrt{2}$.	Leave blank			----	--	----------------	---			The eccentricity of E is $\frac{1}{\sqrt{2}}$.					(a) Calculate the value of a .	2)				The ellipse E cuts the y -axis at the points D and D' . The foci of E are S and S' .					(b) Calculate the area of the quadrilateral <i>SDS'D'</i> .	3)				· · · · · · · · · · · · · · · · · · ·	_					_					_					_					_					_					_					_										_					_					_					_					_					_					_					_						J		Question 2 continued		Leav blan		----------------------	-----------------	--------------																																																																																																																Q2			(Total 5 marks)				A1	Leave blank		----	--	-------------		3.	$I_n = \int_0^1 (1-x)^n \cosh x \mathrm{d}x, \ n \geqslant 0.$				(a) Prove that, for $n \ge 2$, $I_n = n(n-1)I_{n-2} - n$.				(5)				(b) Find an exact expression for I_4 , giving your answer in terms of e. (4)																																																																																																			_												Question 3 continued		Leave blank		----------------------	-----------------	----------------																																																												Q3			(Total 9 marks)				L		--	-----		4. $f(x) = 15 \sinh x - 17 \cosh x + 6x$	b		The curve with equation $y = f(x)$ has a stationary point P .			(a) Find the exact <i>x</i> -coordinate of <i>P</i> , giving your answer in terms of ln 2.				(6)		(b) Determine the nature of the stationary point.	(3)																																																																							Question 4 continued	Leav blan		----------------------	--------------																																																																																																												
																										Question 4 continued	Leave blank		----------------------	----------------																																																		Question 4 continued	Le	av an		----------------------	-----------------	----------																																																																							Q4				(Total 9 marks)]		--	-----		. A curve has parametric equations			$x = 2t^3, \ y = 3t^2, \ 0 \leqslant t \leqslant 1.$			The curve is rotated through 2π radians about the <i>x</i> -axis.						Prove that the area of the curved surface generated is $\frac{24\pi}{5}(\sqrt{2}+1)$.	(9)																																																																																												Question 5 continued		Leave blank		----------------------	---	----------------			_				_				_				_				_				_				_				_				_				_				_				_				_				_				_				_				_				_				_			Question 5 continued	Leave		----------------------	-------																																																																																												Question 5 continued		Leav blan		----------------------	-----------------	--------------																																																																																																								Q5			(Total 9 marks)			$\int_{\ln 2}^{\ln 4} \frac{\cosh \theta + 1}{\sinh \theta (\cosh \theta - 1)^2} d\theta,$			--	------		giving your answer as an exact fraction.	(10)																																Question 6 continued	Lea bla	ave ınk		----------------------	------------	------------																																																																									1 /	Question 6 continued	Leave blank		----------------------	----------------																																												Question 6 continued		Leav blanl		----------------------	------------------	---------------																																																																																																																				Qe			(Total 10 marks)			The curve C has cartesian equation			---	-----		$y = \ln(\sin x), \ 0 < x < \pi.$			The intrinsic equation of C is $s = f(\psi)$, where s increases as ψ decrease	S.		(a) Show that $\psi = \frac{\pi}{2} - x$.	(3)		The point with intrinsic coordinates $\left(0, \frac{\pi}{4}\right)$ lies on C .			(b) Show that $s = \ln\left(\frac{\sqrt{2+1}}{\sec\psi + \tan\psi}\right)$.	(6)		(c) Find the radius of curvature of C at the point where $\psi = \frac{\pi}{6}$.	(3)			(3)																																						Question 7 continued	Leav		----------------------	------																																																																																																		Question 7 continued	Leave blank		----------------------	----------------																																																											Question 7 continued	L	Leave blank		----------------------	------------------	----------------																																																								Q 7			(Total 12 marks)	<u> </u>				Leave		----	--	-------		8.	The parabola C has equation $y^2 = 4ax$, where a is a positive constant. The point P on C has coordinates $(ap^2, 2ap)$.	blank			(a) Show that an equation of the normal to C at P is $y + px = 2ap + ap^3$. (4)				The normal to C at P meets the curve again at Q .				(b) Show that the y-coordinate of Q is $-2a\left(\frac{2+p^2}{p}\right)$. (5)				(c) Show that, as p varies, the least distance from P to Q is $6\sqrt{3}a$. (7)																																																																											Question 8 continued	Leave blank		----------------------	----------------																																																																																			Question 8 continued	Leave blank		----------------------	----------------																																																														Question 8 continued		Leave blank		----------------------	--------	----------------			_				-				_				_				_				_				_				-				_				_				_				_				-				-				-				_				- -				- -			uestion 8 continued		Lea		---------------------	------------------	-----		destion o continued																																																																																																														C			(Total 16 marks)				(Total 16 marks)		## **Practice 6**	3			--	-----		(a) Express $\frac{3}{(3r-1)(3r+2)}$ in partial fractions.				(2)		(b) Using your answer to part (a) and the method of differences, show that			(b) Using your answer to part (a) and the method of differences, show that			$\sum_{r=1}^{n} \frac{3}{(3r-1)(3r+2)} = \frac{3n}{2(3n+2)}$			$\sum_{r=1}^{\infty} (3r-1)(3r+2)$ $2(3n+2)$	(3)		1000 2			(c) Evaluate $\sum_{r=100}^{1000} \frac{3}{(3r-1)(3r+2)}$, giving your answer to 3 significant figures.			$_{r=100}(3r-1)(3r+2)$	(2)																																																																																																								Question 1 continued	Leave blank		----------------------	----------------																																									(Tota	Q1 Q1		The displacement x metres of a particle at time t seconds is given by the differential equation		--		$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + x + \cos x = 0$		When $t = 0$, $x = 0$ and $\frac{dx}{dt} = \frac{1}{2}$.		Find a Taylor series solution for x in ascending powers of t , up to and including the term in t^3 .		(5)																																														Question 2 continued		Leav blan		----------------------	-----------------	--------------																																																																																																																																																																				Q2			(Total 5 marks)			3. (a) Find the set of values of x for which		Leave blank		--	-----	----------------						$x+4 > \frac{2}{x+3}$	(6)				(*)			(b) Deduce, or otherwise find, the values of x for which				$x+4>\frac{2}{ x+3 }$				x+3	(1)																																																																																																																			Question 3 continued		Leav blanl		----------------------	-----------------	---------------																																																																																																																																																				Q3				25			(Total 7 marks)				$z = -8 + (8\sqrt{3})i$			--	---	------------------------------		(a) Find the modulu	as of z and the argument of z .			. ,		(3)		Using de Moivre's th	neorem,			(b) find z^3 ,						(2)		(c) find the values o $a,b \in \mathbb{R}$.	of w such that $w^4 = z$, giving your answers in	in the form $a + ib$, where		,		(5)																																																																																										Question 4 continued	Leave
----------------------	-------																																												(Total 10 marks)	Q4	Leave blank 5. Figure 1 Figure 1 shows the curves given by the polar equations $$r=2,$$ $0 \leqslant \theta \leqslant \frac{\pi}{2},$ $r=1.5+\sin 3\theta,$ $0 \leqslant \theta \leqslant \frac{\pi}{2}.$ (a) Find the coordinates of the points where the curves intersect. (3) The region S, between the curves, for which r > 2 and for which $r < (1.5 + \sin 3\theta)$, is shown shaded in Figure 1. (b) Find, by integration, the area of the shaded region S, giving your answer in the form $a\pi + b\sqrt{3}$, where a and b are simplified fractions. **(7)**	Question 5 continued	Leav blanl		----------------------	---------------																																																																																			Question 5 continued	Leav blan		----------------------	--------------																																															Question 5 continued		Leave blank		----------------------	------------------	----------------																																																																				Q5			(Total 10 marks)		Leave blank - **6.** A complex number z is represented by the point P in the Argand diagram. - (a) Given that	z-6	=	z	, sketch the locus of P. **(2)** (b) Find the complex numbers z which satisfy both	z-6	=	z	and	z-3-4i	= 5. (3) The transformation T from the z-plane to the w-plane is given by $w = \frac{30}{z}$. (c) Show that T maps	z-6	=	z	onto a circle in the w-plane and give the cartesian equation of this circle. (5)	Question 6 continued		Leave blank		----------------------	---	----------------			_				_				_				_				_				_				_				_				_				_				_				-				_				-				-				-				_				-			Question 6 continued	Leave		----------------------	-------																																																																																												Question 6 continued		Leave blank		----------------------	------------------	----------------																																																																								Q6			(Total 10 marks)				Leave blank		--	----------------		7. (a) Show that the transformation $z = y^{\frac{1}{2}}$ transforms the differential equation			$\frac{\mathrm{d}y}{\mathrm{d}x} - 4y \tan x = 2y^{\frac{1}{2}} \qquad (\mathrm{I})$			into the differential equation			$\frac{\mathrm{d}z}{\mathrm{d}x} - 2z \tan x = 1 \tag{II}$	(5)		(b) Solve the differential equation (II) to find z as a function of x .	(6)		(c) Hence obtain the general solution of the differential equation (I).	(1)			_			_			_			_			_			_			_			_			_			_			_			_			_		Question 7 continued	Leave blank		----------------------	----------------																																																											Question 7 continued	Leave blank		----------------------	----------------			-			-			_			-			_			-			-			-			-			-			-			-			-			-			-		Question 7 continued		Leave		----------------------	------------------	-------																																																																				Q7			(Total 12 marks)			8.	(a)	Find the value of λ for which $y = \lambda x \sin 5x$ is a particular integral of the differential equation		----	---------------------	---				$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 25y = 3\cos 5x \tag{4}$			(b)	Using your answer to part (a), find the general solution of the differential equation				$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 25y = 3\cos 5x \tag{3}$			Giv	wen that at $x = 0$, $y = 0$ and $\frac{dy}{dx} = 5$,			(c)	form $y = f(x)$.			<i>(</i> 1)	(5)			(d)	Sketch the curve with equation $y = f(x)$ for $0 \le x \le \pi$. (2)																																																																		22				Question 8 continued	Leave		----------------------	-------																																																													Turn over	(Total	14 marks)		--------	-----------	24	Answer all questions.					-------------------------------	-----	--	-----------				Answer each question in the space provided for that questi	on.		1 (a	1)	Sketch the curve $y = \cosh x$.	(1 mark)		(b)	Solve the equation					$6\cosh^2 x - 7\cosh x - 5 = 0$					giving your answers in logarithmic form.	(6 marks)		QUESTION PART REFERENCE	Ans	wer space for question 1																																																			•••••																																															QUESTION PART REFERENCE	Answer space for question 1		-------------------------------	-----------------------------					•••••																																				•••••																					•••••					Do not write outside the box **2 (a)** Draw on the Argand diagram below: (i) the locus of points for which $$	z-2-3i	=2$$ (ii) the locus of points for which $$	z+2-i	=	z-2	$$ (3 marks) (b) Indicate on your diagram the points satisfying both $$	z - 2 - 3i	= 2$$ and $$	z+2-i	\leqslant	z-2	$$ (1 mark) (3 marks)	QUESTION PART REFERENCE	Answer space for question 2		-------------------------------	-----------------------------								••••••			•••••																								••••••			•••••			••••••			••••••																		•••••			•••••						_			_		---	-----	------	------		3	(a)	Show	that	$$\frac{2^{r+1}}{r+2} - \frac{2^r}{r+1} = \frac{r2^r}{(r+1)(r+2)}$$ (3 marks) (b) Hence find $$\sum_{r=1}^{30} \frac{r2^r}{(r+1)(r+2)}$$ giving your answer in the form $2^n - 1$, where *n* is an integer. (3 marks)	QUESTION PART REFERENCE	Answer space for question 3		-------------------------------	-----------------------------					••••••																																																			QUESTION PART REFERENCE	Answer space for question 3		-------------------------------	-----------------------------		NEI ENENGE															•••••									•••••												•••••									•••••												•••••									•••••																					•••••									. ,									4	The	cubic	equation		---	------	-------	----------		~	1110	Cubic	cquation	$$z^3 + pz + q = 0$$ has roots α , β and γ . (a) (i) Write down the value of $\alpha + \beta + \gamma$. (1 mark) (ii) Express $\alpha\beta\gamma$ in terms of q. (1 mark) **(b)** Show that $$\alpha^3 + \beta^3 + \gamma^3 = 3\alpha\beta\gamma \tag{3 marks}$$ - (c) Given that $\alpha = 4 + 7i$ and that p and q are real, find the values of: - (i) β and γ ; (2 marks) (ii) p and q. (3 marks) (d) Find a cubic equation with integer coefficients which has roots $\frac{1}{\alpha}$, $\frac{1}{\beta}$ and $\frac{1}{\gamma}$.	QUESTION PART REFERENCE	Answer space for question 4		-------------------------------	-----------------------------																																									QUESTION PART REFERENCE	Answer space for question 4		-------------------------------	-----------------------------		•••••			••••••			••••••																														••••••																		•••••						•••••			••••••						QUESTION PART REFERENCE	Answer space for question 4		-------------------------------	-----------------------------					•••••																								•••••			•••••																																				•••••								Do not write outside the box	QUESTION PART REFERENCE	Answer space for question 4		-------------------------------	-----------------------------																																																																				•••••		11 12	5	The function f, where $f(x) = \sec x$, has domain $0 \le x < \frac{\pi}{2}$ and has inverse function		---	---			f^{-1} , where $f^{-1}(x) = \sec^{-1} x$.	(a) Show that $$\sec^{-1} x = \cos^{-1} \frac{1}{x} \tag{2 marks}$$ **(b)** Hence show that $$\frac{\mathrm{d}}{\mathrm{d}x}(\sec^{-1}x) = \frac{1}{\sqrt{x^4 - x^2}} \tag{4 marks}$$	QUESTION PART REFERENCE	Answer space for question 5		---	-----------------------------		•••••			•••••			•••••																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
	•••••									•••••			•••••			•••••			•••••																		•••••						• • • • • • • • • • • • • • • • • • • •			QUESTION PART REFERENCE	Answer space for question 5		-------------------------------	-----------------------------																	•••••																																																								6 (a) Show that $$\frac{1}{4}(\cosh 4x + 2\cosh 2x + 1) = \cosh^2 x \cosh 2x \qquad (3 \text{ marks})$$ (b) Show that, if $y = \cosh^2 x$, then $$1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = \cosh^2 2x \tag{3 marks}$$ (c) The arc of the curve $y = \cosh^2 x$ between the points where x = 0 and $x = \ln 2$ is rotated through 2π radians about the x-axis. Show that the area S of the curved surface formed is given by $$S = \frac{\pi}{256} (a \ln 2 + b)$$ where a and b are integers. (7 marks)	QUESTION PART REFERENCE	Answer space for question 6		-------------------------------	-----------------------------																																																		QUESTION PART REFERENCE	Answer space for question 6		-------------------------------	-----------------------------														•••••						•••••			•••••			•••••																																																QUESTION PART REFERENCE	Answer space for question 6		-------------------------------	-----------------------------								••••••																														••••••			•••••																					•••••			•••••						QUESTION PART REFERENCE	Answer space for question 6		-------------------------------	-----------------------------																										•••••			•••••																																												$$\frac{3}{1^2 \times 2^2} + \frac{5}{2^2 \times 3^2} + \frac{7}{3^2 \times 4^2} + \dots + \frac{2n+1}{n^2(n+1)^2} = 1 - \frac{1}{(n+1)^2}$$ (7 marks) (b) Find the smallest integer n for which the sum of the series differs from 1 by less than 10^{-5} .	QUESTION PART REFERENCE	Answer space for question 7		-------------------------------	-----------------------------																																																														•••••			QUESTION PART REFERENCE	Answer space for question 7		-------------------------------	-----------------------------		NEI ENENGE															•••••									•••••												•••••									•••••												•••••									•••••																					•••••									. ,									8	(a)	Use De Moivre's	Theorem 1	to show	that if	$z = \cos\theta + i\sin\theta$	then		---	-----	------------------	-----------	---------	---------	--------------------------------	--------		U	(u,	OSC DC MIDIVIC S	THEOTETH	io snow	mai, m	2 — COS 0 ISIII 0	, unon	$$z^n + \frac{1}{z^n} = 2\cos n\theta \tag{3 marks}$$ **(b) (i)** Expand $$\left(z^2 + \frac{1}{z^2}\right)^4$$. (1 mark) (ii) Show that $$\cos^4 2\theta = A\cos 8\theta + B\cos 4\theta + C$$ where A, B and C are rational numbers. (4 marks) (c) Hence solve the equation $$8\cos^4 2\theta = \cos 8\theta + 5$$ for $0 \le \theta \le \pi$, giving each solution in the form $k\pi$. (3 marks) (d) Show that $$\int_0^{\frac{\pi}{2}} \cos^4 2\theta \, \mathrm{d}\theta = \frac{3\pi}{16} \tag{3 marks}$$	QUESTION PART REFERENCE	Answer space for question 8		-------------------------------	-----------------------------		REFERENCE																																																															QUESTION PART REFERENCE	Answer space for question 8		-------------------------------	-----------------------------																																																											•••••									QUESTION PART REFERENCE	Answer space for question 8		-------------------------------	-----------------------------																										•••••			•••••																																													QUESTION PART REFERENCE	Answer space for question 8			-------------------------------	-----------------------------	--																														•••••												•••••																																																				END OF QUESTIONS																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																