NOTICE TO CUSTOMER:

The sale of this product is intended for use of the original purchaser only and for use only on a single computer system. Duplicating, selling, or otherwise distributing this product is a violation of the law; your license of the product will be terminated at any moment if you are selling or distributing the products.

No parts of this book may be reproduced, stored in a retrieval system, of transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Answer all questions.

1 Three forces $2\mathbf{i}$, $3\mathbf{i} - 5\mathbf{j} + a\mathbf{k}$ and $b\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}$ act at the points with coordinates (1, 1, 0), (0, 0, 0) and (-1, 2, 1) respectively, where a and b are constants.

Given that the three forces form a couple, find:

(a) the values of a and b;

(2 marks)

(b) the moment of the couple.

(4 marks)

- 2 Forces $\begin{bmatrix} 8 \\ 4 \end{bmatrix}$, $\begin{bmatrix} 6 \\ 5 \end{bmatrix}$, $\begin{bmatrix} -2 \\ -2 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ -2 \end{bmatrix}$ act at the points with coordinates (0,0), (0,3), (3,4) and (4,0) respectively.
 - (a) (i) Find the magnitude of the resultant **F** of this system of forces.

(3 marks)

(ii) Show that the line of action of \mathbf{F} cuts the y-axis at the point (0,2).

(4 marks)

(b) The system of forces is equivalent to a force acting at the origin together with a couple C. Write down the magnitude of C and indicate its sense on a diagram.

(2 marks)

3 A framework is composed of seven light smoothly-jointed rods AB, AE, BE, BD, ED, BC and DC, so that ABDE is a square and BDC is a right-angled triangle. The rod AB has length l and angle $CBD = 45^{\circ}$.

The framework is in a vertical plane and is freely hinged at A to a fixed support. A vertical force of 100 N acts at C. The rod AE is kept vertical by a horizontal force of magnitude P newtons applied at E, as shown in the diagram.

- (a) Show that P = 200. (2 marks)
- (b) (i) Find the magnitude of the reaction force on the framework at A. (2 marks)
 - (ii) Find the angle between this reaction force and the horizontal, giving your answer to the nearest degree. (1 mark)
- (c) Find the magnitudes of the forces in each of the rods AB, AE and BE, stating whether they are in tension or compression. (5 marks)

Turn over for the next question

4 A uniform solid circular cylinder is in equilibrium with one plane face on a rough inclined plane. The plane is inclined to the horizontal at an angle α degrees, which can be varied. The cylinder has weight W, diameter d and height 3d.

(a) Draw a diagram showing the forces acting on the cylinder.

(2 marks)

- (b) If the plane is sufficiently rough to prevent sliding, find the maximum value of α for the cylinder to remain in equilibrium. (3 marks)
- (c) The coefficient of friction between the cylinder and the plane is $\frac{2}{9}$. If the value of α is gradually increased from zero, show that the cylinder will slide before it topples.

(5 marks)

5 A light inextensible string is wrapped several times around a uniform cylinder and a particle of mass 2m is attached to the free end of the string.

The cylinder, of radius r, is free to rotate about a smooth fixed horizontal axis through its centre, perpendicular to its plane face. The moment of inertia of the cylinder about this axis is $4mr^2$.

The system is released from rest with the particle hanging freely. After time t, the cylinder has turned through an angle θ radians. Assume that during this subsequent motion no slipping of the string occurs.

(a) Show that $\ddot{\theta} = \frac{g}{3r}$. (6 marks)

(b) Hence find an expression for the tension in the string in terms of m and g. (1 mark)

Turn over for the next question

6 (a) A uniform semicircular lamina of radius r has its centre at the origin and its axis of symmetry along Ox. The position of its centre of mass has coordinates $(\bar{x}, 0)$.

(i) Show that
$$\frac{1}{2}\pi r^2 \overline{x} = \int_0^r 2x \sqrt{r^2 - x^2} \, dx$$
. (4 marks)

(ii) Hence prove that
$$\overline{x} = \frac{4r}{3\pi}$$
. (3 marks)

(b) The diagram below shows a uniform lamina, used as an advertising feature in a local supermarket to promote ice cream. It consists of a semicircle, of diameter AB = 1m, and an isosceles triangle ABC, where C is at a distance 1.2 m from AB.

- (i) State the distance of the centre of mass of the **triangle** from C. (1 mark)
- (ii) Show that the distance of the centre of mass of the **semicircle** from C is approximately 1.41 m. (1 mark)
- (iii) Find the distance of the centre of mass of the complete lamina from C. (4 marks)
- (c) The lamina is freely suspended from A. Find the angle that AB makes with the vertical through A, giving your answer to the nearest degree. (3 marks)

Copyright © mppe.org.uk and its license. All Rights Reserved

7 A rigid square framework ABCD is formed from four identical uniform rods. Each rod has length 2l and mass m.

The framework can rotate freely in a vertical plane about a horizontal axis through A perpendicular to the plane of the square ABCD.

- (a) Show that the moment of inertia of the **rod** *BC* about the axis is $\frac{16ml^2}{3}$. (4 marks)
- (b) Particles of masses 4m, 3m, 2m and m are fixed at the vertices A, B, C and D respectively.

Show that the moment of inertia of the whole system about the axis through A is $\frac{136ml^2}{3}.$ (6 marks)

(c) The system is released from rest with AD horizontal and B vertically **above** A. Find, in terms of g and l, the angular velocity of the system when B is vertically **below** A.

(7 marks)

END OF QUESTIONS

Practice 2

		Leav
1. [In this question i and j are unit vectors due east and due north respectively.]	bl	olan
A ship P is moving with velocity $(5\mathbf{i} - 4\mathbf{j})$ km h ⁻¹ and a ship Q is moving with velocity $(3\mathbf{i} + 7\mathbf{j})$ km h ⁻¹ . Find the direction that ship Q appears to be moving in, to an observe ship P , giving your answer as a bearing.	ocity er on	
	(5)	

Question 1 continued		Lea bla
	(Total 5 marks)	Q1

		Lea
2.	Two small smooth spheres A and B have equal radii. The mass of A is $2m$ kg and the mass of B is m kg. The spheres are moving on a smooth horizontal plane and they collide. Immediately before the collision the velocity of A is $(2\mathbf{i} - 2\mathbf{j})$ m s ⁻¹ and the velocity of B is $(-3\mathbf{i} - \mathbf{j})$ m s ⁻¹ . Immediately after the collision the velocity of A is $(\mathbf{i} - 3\mathbf{j})$ m s ⁻¹ . Find the	bla
	speed of B immediately after the collision.	
	(5)	

Question 2 continued		Lea blar
		Q2
	(Total 5 marks)	

3.	At time $t = 0$, a particle of mass m is projected vertically downwards with speed U from a point above the ground. At time t the speed of the particle is v and the magnitude of the air resistance is modelled as being mkv , where k is a constant.	Le bla
	Given that $U < \frac{g}{2k}$, find, in terms of k , U and g , the time taken for the particle to double	
	its speed.	
	(8)	

Question 3 continued		Leave blank
		Q3
	(Total 8 marks)	

	Leave
4.	
θ	
20	
Figure 1	
A small smooth ball B , moving on a horizontal plane, collides with a fixed vertical wall. Immediately before the collision the angle between the direction of motion of B and the wall is 2θ , where $0^{\circ} < \theta < 45^{\circ}$. Immediately after the collision the angle between the direction of motion of B and the wall is θ , as shown in Figure 1. Given that the coefficient of restitution between B and the wall is $\frac{3}{8}$, find the value of $\tan \theta$.	
(8)	

Question 4 continued		Leave blank
		04
	(Total 8 marks)	Q4

5.	A light elastic spring has natural length l and modulus of elasticity mg . One end of t spring is fixed to a point O on a rough horizontal table. The other end is attached to a partic P of mass m which is at rest on the table with $OP = l$. At time $t = 0$ the particle is project with speed $\sqrt{(gl)}$ along the table in the direction OP . At time t the displacement of P from its initial position is x and its speed is v . The motion of P is subject to air resistance	ele ed m	nk
	magnitude $2mv\omega$, where $\omega = \sqrt{\frac{g}{l}}$. The coefficient of friction between P and the table	is	
	0.5.		
	(a) Show that, until P first comes to rest,		
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2\omega \frac{\mathrm{d}x}{\mathrm{d}t} + \omega^2 x = -0.5g.$	6)	
	(b) Find x in terms of t , l and ω .		
		6)	
	(c) Hence find, in terms of ω , the time taken for P to first come to instantaneous rest.		
		3)	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	

Question 5 continued	bla

Question 5 continued	Leav blan

		Leave
Question 5 continued		
		0.5
	(Total 15 marks)	Q5
	(Total 15 marks)	

Leave blank

6.

Figure 2

A river is 30 m wide and flows between two straight parallel banks. At each point of the river, the direction of flow is parallel to the banks. At time t = 0, a boat leaves a point O on one bank and moves in a straight line across the river to a point P on the opposite bank. Its path OP is perpendicular to both banks and OP = 30 m, as shown in Figure 2. The speed of flow of the river, r m s⁻¹, at a point on OP which is at a distance x m from O, is modelled as

$$r = \frac{1}{10}x, \quad 0 \le x \le 30.$$

The speed of the boat relative to the water is constant at 5 m s⁻¹. At time t seconds the boat is at a distance x m from O and is moving with speed v m s⁻¹ in the direction OP.

(a) Show that

$$100v^2 = 2500 - x^2. ag{3}$$

(b) Hence show that

$$\frac{d^2x}{dt^2} + \frac{x}{100} = 0. {4}$$

(c) Find the total time taken for the boat to cross the river from O to P.

(9)

Question 6 continued	Lea bla

Question 6 continued	Leave

		Leave blank
Question 6 continued		
		Q6
	(Total 16 marks)	

Leave blank

7. $\begin{array}{c}
2a \\
2\theta \\
2a
\end{array}$

Figure 3

A uniform rod AB, of length 2a and mass kM where k is a constant, is free to rotate in a vertical plane about the fixed point A. One end of a light inextensible string of length 6a is attached to the end B of the rod and passes over a small smooth pulley which is fixed at the point P. The line AP is horizontal and of length 2a. The other end of the string is attached to a particle of mass M which hangs vertically below the point P, as shown in Figure 3. The angle PAB is 2θ , where $0^{\circ} \le \theta \le 180^{\circ}$.

(a) Show that the potential energy of the system is

$$Mga(4\sin\theta - k\sin 2\theta) + \text{constant.}$$
 (5)

M

The system has a position of equilibrium when $\cos\theta = \frac{3}{4}$.

(b) Find the value of k.

(5)

(c) Hence find the value of $\cos\theta$ at the other position of equilibrium.

(3)

(d) Determine the stability of each of the two positions of equilibrium.

(5)

Question 7 continued	Lea bla

Question 7 continued	Leave blank

Question 7 continued	Lea bla

Question 7 continued		Lea bla
		Q
	(Total 18 marks)	
	TOTAL FOR PAPER: 75 MARKS	
E	END	

Answer all questions.

1 Anne has made a simple pendulum which has a period of 4 seconds.

Show that the length of Anne's pendulum is $\frac{4g}{\pi^2}$. (3 marks)

2 A particle moves with simple harmonic motion on a straight line between the points P and Q. The amplitude of this motion is $0.3 \,\mathrm{m}$.

When the particle is $0.06 \,\mathrm{m}$ from P, its speed is $0.9 \,\mathrm{m}\,\mathrm{s}^{-1}$.

- (a) Show that the period of motion is $\frac{2\pi}{5}$ seconds. (5 marks)
- (b) Find the magnitude of the maximum acceleration of the particle. (2 marks)
- 3 A particle moves so that, at time t, its polar coordinates (r, θ) with respect to a fixed origin, O, are such that $r = \frac{a}{1 + 5\cos\theta}$, where a is a constant.
 - (a) At the point A, the value of r is a minimum.

Show that at this point
$$r = \frac{a}{6}$$
. (2 marks)

(b) Show that
$$\dot{r} = \frac{5r^2}{a}\dot{\theta}\sin\theta$$
. (3 marks)

(c) Show that
$$\ddot{r} = \frac{5a\dot{\theta}^2}{36}$$
 when the particle is at A . (6 marks)

(d) The radial acceleration of the particle is $-\frac{\lambda}{r^2}$, where λ is a constant.

Find the speed of the particle at A in terms of λ and a. (5 marks)

4 A smooth rod passes through two points A and D, where D is a distance 5a vertically above A.

Two uniform rods, AB and BC, each of mass 2m and length a, are smoothly pivoted at B. The rod AB is smoothly pivoted at A, and the rod BC has the end C attached to a light smooth ring that can move freely on the vertical rod AD.

The ring, attached to the rod BC at C, is joined to the point D by a light spring, which has modulus of elasticity 6mg, and natural length 3a.

The rod AB is inclined at an angle θ to the vertical with the ring above A, as shown in the diagram.

(a) Show that V, the total potential energy of the system, is given by

$$V = 4mga(1 - \cos\theta + \cos^2\theta)$$

where the gravitational potential energy is taken to be zero at the level of A. (6 marks)

- (b) Find the two values of θ in the range $0 \le \theta \le \frac{\pi}{2}$ for which the system is in equilibrium. (4 marks)
- (c) Determine, for each of these values of θ , whether the system is in stable or unstable equilibrium. (4 marks)

Turn over for the next question

5 A car travels along a straight horizontal road. At time t, its speed is v and the total resistance to motion has magnitude kv, where k is a constant. The car is powered by a rocket, which ejects burnt fuel backwards at a constant rate λ and at a constant speed V relative to the car.

The initial mass of the car and the fuel is M.

(a) By considering linear momentum, show that the acceleration of the car along the road is

$$\frac{\lambda V - kv}{M - \lambda t} \tag{7 marks}$$

- (b) The initial speed of the car is zero. Find its speed at time t. (6 marks)
- (c) Initially, the mass of the fuel is 75% of the mass M. When $t = T_0$, all of the fuel has been burnt. Find T_0 in terms of M and λ . (3 marks)
- 6 A particle P, of mass 2m, is suspended from a fixed point O by a light elastic string of natural length a and modulus of elasticity $8mn^2a$, where n is a positive constant. The particle is released from rest when t=0 at a point A, where A is vertically below O and OA=a.

When the particle is moving with speed v, it experiences air resistance of magnitude 4mnv.

(a) The displacement of P below A at time t is x. Show that x satisfies the equation

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2n\frac{\mathrm{d}x}{\mathrm{d}t} + 4n^2 x = g \tag{3 marks}$$

- (b) Find x in terms of n, g and t. (12 marks)
- (c) Hence show that the first time the particle comes to rest is when $t = \frac{\pi}{\sqrt{3}n}$. (4 marks)

END OF QUESTIONS

Practice 4

	Leav blanl
1. [In this question \mathbf{i} and \mathbf{j} are horizontal unit vectors.]	o and
A small bead of mass 0.5 kg is threaded on a smooth horizontal wire. The bead is initially at rest at the point with position vector $(\mathbf{i} - 6\mathbf{j})$ m. A constant horizontal force \mathbf{P} N then acts on the bead causing it to move along the wire. The bead passes through the point with position vector $(7\mathbf{i} - 14\mathbf{j})$ m with speed $2\sqrt{7}$ m s ⁻¹ .	n
Given that P is parallel to $(6\mathbf{i} + \mathbf{j})$, find P .	
(6)
	-
	-
	-
	_
	_
	-
	-
	-
	-
	-
	-
	_
	_
	_
	-
	-
	-
	-
	-
	_
	_
	-
	-
	-
	-
	-

Question 1 continued		Lea bla
		Q1
	(Total 6 marks)	

		Leave blank
2.	The velocity \mathbf{v} m s ⁻¹ of a particle P at time t seconds satisfies the vector differential equation	
	$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} + 4\mathbf{v} = 0 \ .$	
	The position vector of P at time t seconds is \mathbf{r} metres.	
	Given that at $t = 0$, $\mathbf{r} = (\mathbf{i} - \mathbf{j})$ and $\mathbf{v} = (-8\mathbf{i} + 4\mathbf{j})$, find \mathbf{r} at time t seconds. (7)	

Question 2 continued		Leave blank
		Q2
	(Total 7 marks)	

		Leave
3.	A system of forces consists of two forces \mathbf{F}_1 and \mathbf{F}_2 acting on a rigid body.	blank
	$\mathbf{F}_1 = (-2\mathbf{i} + \mathbf{j} - \mathbf{k}) \text{ N}$ and acts at the point with position vector $\mathbf{r}_1 = (\mathbf{i} - \mathbf{j} + \mathbf{k}) \text{ m}$.	
	$\mathbf{F}_2 = (3\mathbf{i} - \mathbf{j} + 2\mathbf{k})$ N and acts at the point with position vector $\mathbf{r}_2 = (4\mathbf{i} - \mathbf{j} - 2\mathbf{k})$ m.	
	Given that the system is equivalent to a single force \mathbf{R} N, acting at the point with position vector $(5\mathbf{i} + \mathbf{j} - \mathbf{k})$ m, together with a couple \mathbf{G} N m, find	
	(a) R , (2)	
	(b) the magnitude of G . (9)	

Question 3 continued	Leave blank
(Total 11 marks)	Q3

4.	At time $t=0$ a rocket is launched from rest vertically upwards. The rocket propels itse upwards by expelling burnt fuel vertically downwards with constant speed U m so relative to the rocket. The initial mass of the rocket is M_0 kg. At time t seconds, when $t < 2$, its mass is $M_0(1-\frac{1}{2}t)$ kg, and it is moving upwards with speed v m s ⁻¹ .	-1
	(a) Show that $\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{U}{(2-t)} - 9.8$	7)
	(b) Hence show that $U > 19.6$	2)
	(c) Find, in terms of U , the speed of the rocket one second after its launch.	5)
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_

8

Question 4 continued	Lea blai

Question 4 continued	Leave blank

Question 4 continued	I t	Leave blank
		Q4
	(Total 14 marks)	

Question 5 continued	Lea bla

Question 5 continued	Leav blanl

		Leave
Question 5 continued		blank
		Q5
	(Total 11 marks)	

15

6.	A uniform solid right circular cylinder has mass M , height h and radius a . Find, using integration, its moment of inertia about a diameter of one of its circular ends.	Leave blank
	[You may assume without proof that the moment of inertia of a uniform circular disc, of	
	mass m and radius a, about a diameter is $\frac{1}{4}$ ma ² .] (10)	

16

Question 6 continued	Lea bla

17

Question 6 continued	Lea

		Leave blank
Question 6 continued		
		Q6
	(Total 10 marks)	

			Leav blan
displaced. At time t the lamina has rotated through an angle θ . (a) Show that $2a\left(\frac{\mathrm{d}\theta}{\mathrm{d}t}\right)^2 = g\left(1-\cos\theta\right).$ (4) (b) Show that, at time t , the magnitude of the component of the force acting on the lamina at A , in a direction perpendicular to AC , is $\frac{1}{2}mg\sin\theta$. (7) When the lamina reaches the position with C vertically below A , it receives an impulse which acts at C , in the plane of the lamina and in a direction which is perpendicular to the line AC . As a result of this impulse the lamina is brought immediately to rest. (c) Find the magnitude of the impulse.	7.	plane about a fixed smooth horizontal axis L which passes through A and is perpendicular	
$2a\left(\frac{\mathrm{d}\theta}{\mathrm{d}t}\right)^2 = g\left(1-\cos\theta\right).$ (4) (b) Show that, at time t , the magnitude of the component of the force acting on the lamina at A , in a direction perpendicular to AC , is $\frac{1}{2}mg\sin\theta$. (7) When the lamina reaches the position with C vertically below A , it receives an impulse which acts at C , in the plane of the lamina and in a direction which is perpendicular to the line AC . As a result of this impulse the lamina is brought immediately to rest. (c) Find the magnitude of the impulse.		·	
 (b) Show that, at time t, the magnitude of the component of the force acting on the lamina at A, in a direction perpendicular to AC, is ½ mg sin θ. (7) When the lamina reaches the position with C vertically below A, it receives an impulse which acts at C, in the plane of the lamina and in a direction which is perpendicular to the line AC. As a result of this impulse the lamina is brought immediately to rest. (c) Find the magnitude of the impulse. 		(a) Show that $2a\left(\frac{d\theta}{dt}\right)^2 = g(1-\cos\theta).$	
 at A, in a direction perpendicular to AC, is ½ mg sin θ. (7) When the lamina reaches the position with C vertically below A, it receives an impulse which acts at C, in the plane of the lamina and in a direction which is perpendicular to the line AC. As a result of this impulse the lamina is brought immediately to rest. (c) Find the magnitude of the impulse. 			
When the lamina reaches the position with <i>C</i> vertically below <i>A</i> , it receives an impulse which acts at <i>C</i> , in the plane of the lamina and in a direction which is perpendicular to the line <i>AC</i> . As a result of this impulse the lamina is brought immediately to rest. (c) Find the magnitude of the impulse.		(b) Show that, at time t , the magnitude of the component of the force acting on the lamina	
which acts at <i>C</i> , in the plane of the lamina and in a direction which is perpendicular to the line <i>AC</i> . As a result of this impulse the lamina is brought immediately to rest. (c) Find the magnitude of the impulse.			
		which acts at C , in the plane of the lamina and in a direction which is perpendicular to the	
		•	
		(5)	

Question 7 continued	Lea bla

Question 7 continued	Leave blank

Question 7 continued		Leav blan
		Q'
	(Total 16 marks)	
	TOTAL FOR PAPER: 75 MARKS	

23

Leave blank

1.

Figure 1

A fixed smooth plane is inclined to the horizontal at an angle of 45° . A particle P is moving horizontally and strikes the plane. Immediately before the impact, P is moving in a vertical plane containing a line of greatest slope of the inclined plane. Immediately after the impact, P is moving in a direction which makes an angle of 30° with the inclined plane, as shown in Figure 1.

(6)	Find the fraction of the kinetic energy of P which is lost in the impact.

http://www.mppe.org.uk Leave blank **Question 1 continued** Q1

3

(Total 6 marks)

Leave

k W	At time $t = 0$, a particle P of mass m is projected vertically upwards with speed $\sqrt{\frac{g}{k}}$, where is a constant. At time t the speed of P is v . The particle P moves against air resistance whose magnitude is modelled as being mkv^2 when the speed of P is v . Find, in terms of k , the distance travelled by P until its speed first becomes half of its initial speed. (9)

http://www.mppe.org.uk Leave blank Question 2 continued

Question 2 continued	Leave blank

http://www.mppe.org.uk Leave blank Question 2 continued Q2

7

(Total 9 marks)

Leave blank

3.	At noon a motorboat P is 2 km north-west of another motorboat Q . The motorboat moving due south at 20 m s ⁻¹ . The motorboat Q is pursuing motorboat P at a space 12 m s ⁻¹ and sets a course in order to get as close to motorboat P as possible.	
	(a) Find the course set by Q , giving your answer as a bearing to the nearest degree	ee. (4)
	(b) Find the shortest distance between P and Q .	(3)
	(c) Find the distance travelled by Q from its position at noon to the point of approach.	closest
		(5)

http://www.mppe.org.uk Leave blank Question 3 continued

	Leave
Question 3 continued	Diank

http://www.mppe.org.uk Leave blank Question 3 continued $\mathbf{Q3}$ (Total 12 marks)

Leave blank

4.

Figure 2

A light inextensible string of length 2a has one end attached to a fixed point A. The other end of the string is attached to a particle P of mass m. A second light inextensible string of length L, where $L > \frac{12a}{5}$, has one of its ends attached to P and passes over a small smooth peg fixed at a point B. The line AB is horizontal and AB = 2a. The other end of the second string is attached to a particle of mass $\frac{7}{20}m$, which hangs vertically below B, as shown in Figure 2.

(a) Show that the potential energy of the system, when the angle $PAB = 2\theta$, is

$$\frac{1}{5} mga(7\sin\theta - 10\sin2\theta) + \text{constant}.$$
 (4)

(b) Show that there is only one value of $\cos \theta$ for which the system is in equilibrium and find this value.

(8)

(c) Determine the stability of the position of equilibrium.

(4)	
('')	

http://www.mppe.org.uk Leave blank **Question 4 continued**

Question 4 continued	Leave blank
Question i continued	

http://www.mppe.org.uk Leave blank **Question 4 continued Q**4 (Total 16 marks)

Leave

5.	Two small smooth spheres A and B , of mass 2 kg and 1 kg respectively, are moving on a smooth horizontal plane when they collide. Immediately before the collision the velocity of A is $(\mathbf{i} + 2\mathbf{j})$ m s ⁻¹ and the velocity of B is $-2\mathbf{i}$ m s ⁻¹ . Immediately after the collision the velocity of A is \mathbf{j} m s ⁻¹ .		
	(a) Show that the velocity of B immediately after the collision is $2\mathbf{j}$ m s ⁻¹ .)	
	 (b) Find the impulse of B on A in the collision, giving your answer as a vector, and hence show that the line of centres is parallel to i + j. 		
	(c) Find the coefficient of restitution between A and B.	(a)	
		_	
		_	
		_	
		_	
		_	
		_	
		-	
		_	
		_	
		_	
		-	

http://www.mppe.org.uk Leave blank Question 5 continued

	Leave
Question 5 continued	Dialik
Question 3 continued	

http://www.mppe.org.uk Leave blank **Question 5 continued Q5** (Total 13 marks)

Leave blank

6. A light elastic spring AB has natural length 2a and modulus of elasticity $2mn^2a$, where n is a constant. A particle P of mass m is attached to the end A of the spring. At time t = 0, the spring, with P attached, lies at rest and unstretched on a smooth horizontal plane. The other end B of the spring is then pulled along the plane in the direction AB with constant acceleration f. At time t the extension of the spring is x.

(a) Show that $\frac{d^2x}{dt^2} + n^2x = f.$ (6)

(b) Find x in terms of n, f and t.

(8)

Hence find

(c) the maximum extension of the spring,
(3)

(d) the speed of P when the spring first reaches its maximum extension. (2)

http://www.mppe.org.uk Leave blank Question 6 continued

http://www.mppe.org.uk

Question 6 continued	Leave blank
Question o continueu	

http://www.mppe.org.uk Leave blank Question 6 continued **Q6** (Total 19 marks) **TOTAL FOR PAPER: 75 MARKS END**

Practice 6

		L
1.	At time $t = 0$, a particle P of mass 3kg is at rest at the point A with position vector $(\mathbf{j} - 3\mathbf{k})$ m. Two constant forces \mathbf{F}_1 and \mathbf{F}_2 then act on the particle P and it passes through the point B with position vector $(8\mathbf{i} - 3\mathbf{j} + 5\mathbf{k})$ m.	
	Given that $\mathbf{F}_1 = (4\mathbf{i} - 2\mathbf{j} + 5\mathbf{k})$ N and $\mathbf{F}_2 = (8\mathbf{i} - 4\mathbf{j} + 7\mathbf{k})$ N and that \mathbf{F}_1 and \mathbf{F}_2 are the <i>only</i> two forces acting on P , find the velocity of P as it passes through B , giving your answer as a vector.	
	(7)	

Question 1 continued		Leave
		Q1
	(Total 7 marks)	

2.	At time t seconds, the position vector of a particle P is \mathbf{r} metres, where \mathbf{r} satisfies the vector differential equation $\frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}t^2} + 4\mathbf{r} = \mathrm{e}^{2t}\mathbf{j}.$ When $t = 0$, P has position vector $(\mathbf{i} + \mathbf{j})$ m and velocity $2\mathbf{i}$ m s^{-1} .	I
	Find an expression for \mathbf{r} in terms of t . (11)	
_		

Question 2 continued	Leav blan

Question 2 continued		Leav blan
Question 2 continued		
		Q
	(Total 11 marks)	

		Leave blank
3.	A spaceship is moving in a straight line in deep space and needs to increase its speed. This is done by ejecting fuel backwards from the spaceship at a constant speed c relative to the spaceship. When the speed of the spaceship is v , its mass is m .	biank
	(a) Show that, while the spaceship is ejecting fuel,	
	$\frac{\mathrm{d}v}{\mathrm{d}m} = -\frac{c}{m}.$	
	(5)	
	The initial mass of the spaceship is m_0 and at time t the mass of the spaceship is given by $m = m_0(1 - kt)$, where k is a positive constant.	
	(b) Find the acceleration of the spaceship at time <i>t</i> .	
	(4)	
_		

Question 3 continued	Leave

Question 3 continued	Leave blank

Question 3 continued	L b	eave lank
	Q3	3
	(Total 9 marks)	

Leave blank 4. Figure 1 A uniform lamina of mass M is in the shape of a right-angled triangle OAB. The angle OABis 90°, OA = a and AB = 2a, as shown in Figure 1. (a) Prove, using integration, that the moment of inertia of the lamina *OAB* about the edge OA is $\frac{2}{3}Ma^2$. (You may assume without proof that the moment of inertia of a uniform rod of mass m and length 2l about an axis through one end and perpendicular to the rod is $\frac{4}{3}ml^{2}$.) **(6)** The lamina *OAB* is free to rotate about a fixed smooth horizontal axis along the edge OA and hangs at rest with B vertically below A. The lamina is then given a horizontal impulse of magnitude J. The impulse is applied to the lamina at the point B, in a direction which is perpendicular to the plane of the lamina. Given that the lamina first comes to instantaneous rest after rotating through an angle of 120°, (b) find an expression for J, in terms of M, a and g. **(7)**

Question 4 continued	Leave blank

Question 4 continued		Leav
		Q4
	(Total 13 marks)	

5.	Two forces $\mathbf{F}_1 = (2\mathbf{i} + \mathbf{j})$ N and $\mathbf{F}_2 = (-2\mathbf{j} - \mathbf{k})$ N act on a rigid body. The force \mathbf{F}_1 acts at the point with position vector $\mathbf{r}_1 = (3\mathbf{i} + \mathbf{j} + \mathbf{k})$ m and the force \mathbf{F}_2 acts at the point with position vector $\mathbf{r}_2 = (\mathbf{i} - 2\mathbf{j})$ m. A third force \mathbf{F}_3 acts on the body such that \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 are in equilibrium.	Leav blan
	(a) Find the magnitude of \mathbf{F}_3 .	
	(4)	
	(b) Find a vector equation of the line of action of \mathbf{F}_3 .	
	(8)	
	The force \mathbf{F}_3 is replaced by a fourth force \mathbf{F}_4 , acting through the origin O , such that \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_4 are equivalent to a couple.	
	(c) Find the magnitude of this couple.	
	(4)	

Question 5 continued	Lb	eave blank
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	

Question 5 continued	Leav blan

Question 5 continued		Leav
		Q5
	(Total 16 marks)	

		Leave
6.	A pendulum consists of a uniform rod AB , of length $4a$ and mass $2m$, whose end A is rigidly attached to the centre O of a uniform square lamina $PQRS$, of mass $4m$ and side a . The rod AB is perpendicular to the plane of the lamina. The pendulum is free to rotate about a fixed smooth horizontal axis L which passes through B . The axis L is perpendicular to AB and parallel to the edge PQ of the square.	Olalik
	(a) Show that the moment of inertia of the pendulum about L is $75ma^2$. (4)	
	The pendulum is released from rest when BA makes an angle α with the downward vertical through B , where $\tan \alpha = \frac{7}{24}$. When BA makes an angle θ with the downward vertical through B , the magnitude of the component, in the direction AB , of the force exerted by the axis L on the pendulum is X .	
	(b) Find an expression for X in terms of m , g and θ .	
	Using the approximation $\theta \approx \sin \theta$,	
	(c) find an estimate of the time for the pendulum to rotate through an angle α from its initial rest position.	
	(6)	

Question 6 continued	Leav blan

Question 6 continued	Leav blank

Question 6 continued		Leave blank
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	_	
	-	
	-	
	-	
	-	
	-	
	-	

Question 6 continued		Lea bla
		C
	(Total 19 marks)	
	TOTAL FOR PAPER: 75 MARKS	
	END	