| Centre Number       |  |  | Candidate Number |  |  |
|---------------------|--|--|------------------|--|--|
| Surname             |  |  |                  |  |  |
| Other Names         |  |  |                  |  |  |
| Candidate Signature |  |  |                  |  |  |



General Certificate of Education Advanced Subsidiary Examination January 2009

# Chemistry

CHEM1

**Unit 1** Foundation Chemistry

Friday 9 January 2009 1.30 pm to 2.45 pm

| For this paper you must have: |  |
|-------------------------------|--|
| a calculator.                 |  |

### Time allowed

• 1 hour 15 minutes

### Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. **Answers written** in margins or on blank pages will not be marked.
- All working must be shown.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- The Periodic Table/Data Sheet is provided as an insert.

### Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70.
- Your answers to the questions in Section B should be written in continuous prose, where appropriate.
- You will be marked on your ability to:
  - use good English
  - organise information clearly
  - use specialist vocabulary where appropriate.

### **Advice**

 You are advised to spend about 50 minutes on Section A and about 25 minutes on Section B.





### **SECTION A**

Answer all questions in the spaces provided.

- 1 In 1913 Niels Bohr proposed a model of the atom with a central nucleus, made up of protons and neutrons, around which electrons moved in orbits. After further research, the model was refined when the existence of energy levels and sub-levels was recognised.
- 1 (a) Complete the following table for the particles in the nucleus.

| Particle | Relative charge | Relative mass |
|----------|-----------------|---------------|
| proton   |                 |               |
| neutron  |                 |               |

(2 marks)

| 1 | (b) | State | te the block in the Periodic Table to which the element tungsten, W, belongs |              |
|---|-----|-------|------------------------------------------------------------------------------|--------------|
|   |     | ••••• | (                                                                            |              |
| 1 | (c) | Isoto | opes of tungsten include <sup>182</sup> W and <sup>186</sup> W               |              |
| 1 | (c) | (i)   | Deduce the number of protons in <sup>182</sup> W                             |              |
|   |     |       |                                                                              | <br>(1 mark) |
| 1 | (c) | (ii)  | Deduce the number of neutrons in <sup>186</sup> W                            |              |
|   |     |       |                                                                              | <br>(1 mark) |



| 1 | (d) | In order to detect the isotopes of tungsten using a mass spectrometer, a sample containing the isotopes must be vaporised and then ionised. |                                                         |                  |                  |                  |                 |
|---|-----|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------|------------------|------------------|-----------------|
| 1 | (d) | (i)                                                                                                                                         | Give <b>two</b> reasons why the sample must be ionised. |                  |                  |                  |                 |
|   |     |                                                                                                                                             | 1                                                       |                  |                  | ••••             |                 |
|   |     |                                                                                                                                             | 2                                                       |                  |                  |                  |                 |
|   |     |                                                                                                                                             | 2                                                       | •••••            | •••••            | •••••            | (2 marks)       |
| 1 | (d) | (ii)                                                                                                                                        | State what can be adjudifferent isotopes to b           |                  | -                | r to enable ions | formed by the   |
|   |     |                                                                                                                                             |                                                         | •••••            | •••••            |                  | (1 mark)        |
| 1 | (e) | State<br>182W                                                                                                                               | e and explain the differed and <sup>186</sup> W         | ence, if any, be | tween the chem   | nical properties | of the isotopes |
|   |     | Diffe                                                                                                                                       | erence                                                  |                  |                  |                  |                 |
|   |     | Expl                                                                                                                                        | anation                                                 |                  |                  |                  |                 |
|   |     | •••••                                                                                                                                       |                                                         |                  |                  |                  | (2 marks)       |
| 1 | (f) |                                                                                                                                             | table below gives the reple of tungsten.                | elative abunda   | nce of each isot | ope in the mass  | spectrum of a   |
|   |     | m/z                                                                                                                                         |                                                         | 182              | 183              | 184              | 186             |
|   |     | Rel                                                                                                                                         | ative abundance/%                                       | 26.4             | 14.3             | 30.7             | 28.6            |
|   |     |                                                                                                                                             | the data above to calculate. Give your answer           |                  |                  | omic mass of th  | is sample of    |

12



|     |                                 |                                                                             | Н                                                    | С                          | N                                                                 | О                 |            |
|-----|---------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------|----------------------------|-------------------------------------------------------------------|-------------------|------------|
|     |                                 | Electronegativity                                                           | 2.1                                                  | 2.5                        | 3.0                                                               | 3.5               |            |
| (a) | State the                       | meaning of the term                                                         | electroneg                                           | ativity.                   |                                                                   |                   |            |
|     |                                 |                                                                             |                                                      |                            |                                                                   |                   |            |
|     |                                 |                                                                             |                                                      |                            |                                                                   |                   |            |
|     |                                 |                                                                             |                                                      |                            |                                                                   |                   | (2 marks)  |
| (b) | State the                       | strongest type of int                                                       | ermolecula                                           | r force in the             | e following                                                       | compound          | S.         |
|     | Methane                         | (CH <sub>4</sub> )                                                          |                                                      |                            |                                                                   |                   |            |
|     | Ammonia                         | a (NH <sub>3</sub> )                                                        |                                                      |                            |                                                                   |                   |            |
|     |                                 |                                                                             |                                                      |                            |                                                                   |                   | (2 marks)  |
| (c) |                                 | values in the table to<br>ween two molecules                                | -                                                    | _                          | est type of i                                                     | ntermolecu        | ılar force |
|     |                                 |                                                                             |                                                      |                            |                                                                   |                   |            |
|     |                                 |                                                                             |                                                      |                            |                                                                   |                   |            |
|     |                                 |                                                                             |                                                      |                            |                                                                   |                   |            |
|     |                                 |                                                                             |                                                      |                            |                                                                   |                   |            |
|     |                                 |                                                                             |                                                      |                            |                                                                   |                   |            |
|     |                                 |                                                                             |                                                      |                            |                                                                   |                   |            |
| (d) | Phosphor                        |                                                                             |                                                      |                            |                                                                   |                   |            |
| (d) | A molecu                        | rus is in the same groule of PH <sub>3</sub> reacts with type of bond forme | oup of the F<br>h an H <sup>+</sup> ion              | Periodic Tabl              | le as nitroge<br>PH4 <sup>+</sup> ion.                            | :n.               | (3 marks)  |
| (d) | A molecu<br>Name the<br>formed. | rus is in the same groule of PH <sub>3</sub> reacts wit                     | oup of the F<br>h an H <sup>+</sup> ion<br>d when PH | Periodic Table to form a F | le as nitroge<br>PH4 <sup>+</sup> ion.<br>n H <sup>+</sup> and ex | n.                | (3 marks)  |
| (d) | A molecul Name the formed.      | rus is in the same groule of PH <sub>3</sub> reacts with type of bond forme | oup of the F<br>h an H <sup>+</sup> ion<br>d when PH | Periodic Table to form a F | le as nitroge<br>PH4 <sup>+</sup> ion.<br>n H <sup>+</sup> and ex | n.<br>plain how t | (3 marks)  |
| (d) | A molecul Name the formed.      | rus is in the same groule of PH <sub>3</sub> reacts with type of bond forme | oup of the F<br>h an H <sup>+</sup> ion<br>d when PH | Periodic Table to form a F | le as nitroge<br>PH4 <sup>+</sup> ion.<br>n H <sup>+</sup> and ex | n.<br>plain how t | (3 marks)  |



| 2 | (e) | Arsenic is in the same group as nitrogen. It forms the compound AsH <sub>3</sub> Draw the shape of an AsH <sub>3</sub> molecule, including any lone pairs of electrons. Name the shape made by its atoms. |  |
|---|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|   |     | Shape                                                                                                                                                                                                     |  |
|   |     |                                                                                                                                                                                                           |  |
|   |     |                                                                                                                                                                                                           |  |
|   |     |                                                                                                                                                                                                           |  |
|   |     |                                                                                                                                                                                                           |  |
|   |     | Name of shape                                                                                                                                                                                             |  |
| 2 | (f) | The boiling point of AsH <sub>3</sub> is $-62.5$ °C and the boiling point of NH <sub>3</sub> is $-33.0$ °C. Suggest why the boiling point of AsH <sub>3</sub> is lower than that of NH <sub>3</sub>       |  |
|   |     |                                                                                                                                                                                                           |  |
|   |     |                                                                                                                                                                                                           |  |
|   |     | (1 mark)                                                                                                                                                                                                  |  |
| 2 | (g) | Balance the following equation which shows how AsH <sub>3</sub> can be made.                                                                                                                              |  |
|   |     | AsCl <sub>3</sub> + NaBH <sub>4</sub> $\longrightarrow$ AsH <sub>3</sub> + NaCl + BCl <sub>3</sub> (1 mark)                                                                                               |  |
|   |     |                                                                                                                                                                                                           |  |

Turn over for the next question



| 3 |     |       | V) oxide (TiO <sub>2</sub> , $M_r = 79.9$ ) is used as a white pigment in some paints. The in be made as shown in the following equation.                          |
|---|-----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |     |       | $TiCl_4(1) + 2H_2O(1) \longrightarrow TiO_2(s) + 4HCl(aq)$                                                                                                         |
| 3 | (a) | (i)   | Calculate the percentage atom economy for the formation of ${\rm TiO_2}$                                                                                           |
|   |     |       |                                                                                                                                                                    |
|   |     |       |                                                                                                                                                                    |
|   |     |       | (2 marks)                                                                                                                                                          |
| 3 | (a) | (ii)  | In view of the low atom economy of this reaction, suggest how a company can maximise its profits without changing the reaction conditions or the production costs. |
|   |     |       |                                                                                                                                                                    |
|   |     | Ţ.    | (1 mark)                                                                                                                                                           |
| 3 | (b) | In an | experiment 165 g of TiCl <sub>4</sub> were added to an excess of water.                                                                                            |
| 3 | (b) | (i)   | Calculate the amount, in moles, of TiCl <sub>4</sub> in 165 g.                                                                                                     |
|   |     |       |                                                                                                                                                                    |
|   |     |       |                                                                                                                                                                    |
|   |     |       | (2 marks)                                                                                                                                                          |
| 3 | (b) | (ii)  | Calculate the maximum amount, in moles, of ${\rm TiO_2}$ which can be formed in this experiment.                                                                   |
|   |     |       |                                                                                                                                                                    |
|   |     |       | (1 mark)                                                                                                                                                           |
| 3 | (b) | (iii) | Calculate the maximum mass of TiO <sub>2</sub> formed in this experiment.                                                                                          |
|   |     |       |                                                                                                                                                                    |
|   |     |       | (1 mark)                                                                                                                                                           |
|   |     |       |                                                                                                                                                                    |



| 3 | (b) | (iv) | In this experiment only $63.0\mathrm{g}$ of $\mathrm{TiO}_2$ were produced. Calculate the percentage yield of $\mathrm{TiO}_2$ |
|---|-----|------|--------------------------------------------------------------------------------------------------------------------------------|
|   |     |      |                                                                                                                                |
|   |     |      |                                                                                                                                |
|   |     |      | (1 m qub)                                                                                                                      |
|   |     |      | (1 mark)                                                                                                                       |
|   |     |      |                                                                                                                                |

Turn over for the next question

8



| 4 | This | quest | ion is about the elements in Period 3 from Na to P                                                         |
|---|------|-------|------------------------------------------------------------------------------------------------------------|
| 4 | (a)  | (i)   | Explain the meaning of the term first ionisation energy.                                                   |
|   |      |       |                                                                                                            |
|   |      |       |                                                                                                            |
|   |      |       | (2 marks)                                                                                                  |
| 4 | (a)  | (ii)  | State and explain the general trend in first ionisation energies for the elements Na to P                  |
|   |      |       | Trend                                                                                                      |
|   |      |       | Explanation                                                                                                |
|   |      |       |                                                                                                            |
|   |      |       | (2 marks)                                                                                                  |
|   |      |       | (3 marks)                                                                                                  |
| 4 | (a)  | (iii) | State which one of the elements from Na to P deviates from this general trend and explain why this occurs. |
|   |      |       | Element                                                                                                    |
|   |      |       | Explanation                                                                                                |
|   |      |       |                                                                                                            |
|   |      |       |                                                                                                            |
|   |      |       | (3 marks)                                                                                                  |
| 4 | (b)  |       | which one of the elements from Na to P has the highest melting point and explain answer.                   |
|   |      | Elen  | nent                                                                                                       |
|   |      | Expl  | anation                                                                                                    |
|   |      |       |                                                                                                            |
|   |      | ••••• | (3 marks)                                                                                                  |

| 5 | A mo  | etal ca         | arbonate MCO <sub>3</sub> reacts with hydrochloric acid as shown in the following equation.                                                                  |
|---|-------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |       |                 | $MCO_3 + 2HCl \longrightarrow MCl_2 + H_2O + CO_2$                                                                                                           |
|   | A 0.5 | 548 g<br>ochlor | sample of MCO <sub>3</sub> reacted completely with 30.7 cm <sup>3</sup> of 0.424 mol dm <sup>-3</sup> ric acid.                                              |
| 5 | (a)   | (i)             | Calculate the amount, in moles, of HCl which reacted with $0.548\mathrm{g}$ MCO $_3$                                                                         |
|   |       |                 |                                                                                                                                                              |
|   |       |                 | (1 mark)                                                                                                                                                     |
| 5 | (a)   | (ii)            | Calculate the amount, in moles, of $MCO_3$ in $0.548$ g.                                                                                                     |
|   |       |                 |                                                                                                                                                              |
|   |       |                 | (1 mark)                                                                                                                                                     |
| 5 | (a)   | (iii)           | Calculate the relative formula mass of MCO <sub>3</sub>                                                                                                      |
|   |       |                 |                                                                                                                                                              |
|   |       |                 | (1 mark)                                                                                                                                                     |
| 5 | (b)   |                 | your answer from part (a) (iii) to deduce the relative atomic mass of metal M and est its identity.                                                          |
|   |       | (If y           | ou have been unable to calculate a value for the relative formula mass of MCO <sub>3</sub> should assume it to be 147.6 but this is not the correct answer.) |
|   |       | Rela            | tive atomic mass                                                                                                                                             |
|   |       |                 |                                                                                                                                                              |
|   |       | •••••           |                                                                                                                                                              |
|   |       | Iden            | tity of M(2 marks)                                                                                                                                           |
|   |       |                 |                                                                                                                                                              |



### **SECTION B**

|       | Answer Question 6 in the spaces provided on pages 10 to 15.                                                                                                                                                                                             |        |  |  |  |  |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|--|--|
| 6     | Petrol contains saturated hydrocarbons. Some of the molecules in petrol have the mole formula $C_8H_{18}$ and are referred to as octanes. These octanes can be obtained from cru by fractional distillation and by cracking suitable heavier fractions. |        |  |  |  |  |  |
|       | Petrol burns completely in a plentiful supply of air but can undergo incomplete combustion in a car engine.                                                                                                                                             |        |  |  |  |  |  |
| 6     | (a) State the meaning of both the words <i>saturated</i> and <i>hydrocarbon</i> as applied to the <i>saturated hydrocarbon</i> .                                                                                                                        | e term |  |  |  |  |  |
|       | Name the homologous series to which $C_8H_{18}$ belongs.                                                                                                                                                                                                |        |  |  |  |  |  |
|       |                                                                                                                                                                                                                                                         |        |  |  |  |  |  |
| ••••• |                                                                                                                                                                                                                                                         |        |  |  |  |  |  |
| ••••• |                                                                                                                                                                                                                                                         |        |  |  |  |  |  |
| ••••• |                                                                                                                                                                                                                                                         |        |  |  |  |  |  |
| ••••• |                                                                                                                                                                                                                                                         |        |  |  |  |  |  |
| ••••• | (3                                                                                                                                                                                                                                                      | marks) |  |  |  |  |  |
|       |                                                                                                                                                                                                                                                         |        |  |  |  |  |  |
|       |                                                                                                                                                                                                                                                         |        |  |  |  |  |  |
|       |                                                                                                                                                                                                                                                         |        |  |  |  |  |  |
|       |                                                                                                                                                                                                                                                         |        |  |  |  |  |  |
|       |                                                                                                                                                                                                                                                         |        |  |  |  |  |  |
|       |                                                                                                                                                                                                                                                         |        |  |  |  |  |  |
|       |                                                                                                                                                                                                                                                         |        |  |  |  |  |  |
|       |                                                                                                                                                                                                                                                         |        |  |  |  |  |  |
|       |                                                                                                                                                                                                                                                         |        |  |  |  |  |  |



| <b>6</b> (b) Outline the essential features of the fractional distillation of crude oil that enable the crude oil to be separated into fractions. |
|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
| (4 marks)                                                                                                                                         |
|                                                                                                                                                   |
| Question 6 continues on the next page                                                                                                             |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |
|                                                                                                                                                   |



| <b>6</b> (c) | $C_8H_{18}$ is obtained by the catalytic cracking of suitable heavy fractions. State what is meant by the term <i>cracking</i> and name the catalyst used in catalytic cracking. |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Write an equation to show how one molecule of $C_{14}H_{30}$ is cracked to form one molecule of $C_8H_{18}$ and one molecule of another hydrocarbon.                             |
|              | Explain why oil companies need to crack 'suitable heavy fractions'.                                                                                                              |
| ••••••       |                                                                                                                                                                                  |
|              |                                                                                                                                                                                  |
| •••••        |                                                                                                                                                                                  |
| •••••        |                                                                                                                                                                                  |
|              |                                                                                                                                                                                  |
| •••••        |                                                                                                                                                                                  |
| ••••••       |                                                                                                                                                                                  |
|              | (4 marks)                                                                                                                                                                        |
|              |                                                                                                                                                                                  |
|              |                                                                                                                                                                                  |
|              |                                                                                                                                                                                  |
|              |                                                                                                                                                                                  |
|              |                                                                                                                                                                                  |
|              |                                                                                                                                                                                  |
|              |                                                                                                                                                                                  |
|              |                                                                                                                                                                                  |
|              |                                                                                                                                                                                  |
|              |                                                                                                                                                                                  |
|              |                                                                                                                                                                                  |
|              |                                                                                                                                                                                  |



| 6     | (d)   | Write an equation for the incomplete combustion of $C_8H_{18}$ to form carbon monoxide and water only.                                        |
|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|       |       | A catalytic converter is used to remove carbon monoxide from the exhaust gases in a car. Identify a catalyst used in the catalytic converter. |
|       |       | Write an equation to show how carbon monoxide is removed in a catalytic converter.                                                            |
|       |       | State why the water produced in the exhaust gases may contribute to global warming.                                                           |
|       | ••••• |                                                                                                                                               |
| ••••• | ••••• |                                                                                                                                               |
| ••••• | ••••• |                                                                                                                                               |
| ••••• | ••••• |                                                                                                                                               |
|       | ••••• |                                                                                                                                               |
|       | ••••• |                                                                                                                                               |
|       | ••••• |                                                                                                                                               |
|       | ••••• | (4 marks)                                                                                                                                     |
|       |       | (4 marks)                                                                                                                                     |
|       |       |                                                                                                                                               |
|       |       | Question 6 continues on the next page                                                                                                         |
|       |       |                                                                                                                                               |
|       |       |                                                                                                                                               |
|       |       |                                                                                                                                               |
|       |       |                                                                                                                                               |
|       |       |                                                                                                                                               |
|       |       |                                                                                                                                               |
|       |       |                                                                                                                                               |
|       |       |                                                                                                                                               |
|       |       |                                                                                                                                               |



| 6     | (e)   | When some petrol was accidentally contaminated in 2007, the sensors in the affected cars caused a decrease in the supply of petrol to the engine. |
|-------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|       |       | Suggest the effect that the contaminated fuel would have on the performance of the cars.                                                          |
|       |       | State how the oil company might have recognised the problem before the petrol was sold.                                                           |
| ••••• | ••••• |                                                                                                                                                   |
|       |       |                                                                                                                                                   |
|       | ••••• | (2 marks)                                                                                                                                         |
|       |       |                                                                                                                                                   |
|       |       |                                                                                                                                                   |
|       |       |                                                                                                                                                   |
|       |       |                                                                                                                                                   |
|       |       |                                                                                                                                                   |
|       |       |                                                                                                                                                   |
|       |       |                                                                                                                                                   |
|       |       |                                                                                                                                                   |
|       |       |                                                                                                                                                   |
|       |       |                                                                                                                                                   |
|       |       |                                                                                                                                                   |
|       |       |                                                                                                                                                   |



| 6     | (f)    | The molecular formula $C_8H_{18}$ represents several structural isomers. |
|-------|--------|--------------------------------------------------------------------------|
|       |        | State what is meant by the term <i>structural isomers</i> .              |
|       |        | Name the following structural isomer of C <sub>8</sub> H <sub>18</sub>   |
|       |        | CH <sub>3</sub> H CH <sub>3</sub>                                        |
|       |        | $\begin{array}{c c} H_3C - C - C - C - CH_3 \\ & & \end{array}$          |
|       |        | H H CH <sub>3</sub>                                                      |
| ••••• | •••••  |                                                                          |
| ••••• | •••••  |                                                                          |
| ••••• | •••••  |                                                                          |
|       | •••••  |                                                                          |
|       | •••••  |                                                                          |
| ••••• | •••••• | (3 marks)                                                                |

## END OF QUESTIONS







# **GCE Chemistry Data Sheet**

Table 1Infrared absorption data

| Wavenumber /cm <sup>-1</sup> | 3300-3500       | 3230-3550         | 2850-3300 | 2500-3000      | 2220-2260    | 1680 - 1750 | 1620 - 1680 | 1000 - 1300 | 750-1100 |
|------------------------------|-----------------|-------------------|-----------|----------------|--------------|-------------|-------------|-------------|----------|
| Bond                         | N-H<br>(amines) | O-H<br>(alcohols) | C-H       | O-H<br>(acids) | $C \equiv N$ | C = 0       | C = C       | C-O         | C-C      |

| Bond              | Wavenumber<br>/em <sup>-1</sup> |
|-------------------|---------------------------------|
| N—H<br>(amines)   | 3300-3500                       |
| O—H<br>(alcohols) | 3230-3550                       |
| C-H               | 2850-3300                       |
| O—H<br>(acids)    | 2500-3000                       |
| $C \equiv N$      | 2220-2260                       |
| C = 0             | 1680 - 1750                     |
| C = C             | 1620 - 1680                     |
| C-O               | 1000 - 1300                     |
| C-C               | 750-1100                        |
|                   |                                 |

2.1-2.6

3.1 - 3.9

3.1-4.2

 $RCH_2Cl$  or Br

3.7 - 4.1



0.5-5.0 0.7-1.2 1.0-4.5 1.2-1.4 1.4-1.6

 $\begin{array}{l} RN\mathbf{H}_2 \\ R_2C\mathbf{H}_2 \\ R_3C\mathbf{H} \end{array}$ 

 $RCH_3$ ROH

 $\delta/\text{ppm}$ 

Type of proton

**Table 2**<sup>1</sup>H n.m.r. chemical shift data

**Table 3**<sup>13</sup>C n.m.r. chemical shift data

| δ/ppm          | 5-40 | 10-70        | 20-50                                                                                              | 25-60                                                                  | 20-90                                     | 90-150 | 110-125              | 110-160 | 160-185                                                                                     | 190 – 220                      |
|----------------|------|--------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------|--------|----------------------|---------|---------------------------------------------------------------------------------------------|--------------------------------|
| Type of carbon |      | R-C-Cl or Br | $\begin{matrix} \mathbf{R} - \mathbf{C} - \mathbf{C} \\ = - \mathbf{C} \\ \mathbf{O} \end{matrix}$ | $\begin{array}{c} \mathbf{R} - \mathbf{C} \\ - \mathbf{N} \end{array}$ | alcohols,<br> -C-O- ethers or<br>  esters | C = C  | $R\!-\!C\!\equiv\!N$ |         | $\begin{array}{ccc} R-C- & \text{esters or} \\ \parallel & \text{acids} \\ O & \end{array}$ | R-C- aldehydes    or ketones O |



9.0 - 10.0

4.5 - 6.0

10.0 - 12.0

# The Periodic Table of the Elements

|                                              |                     |     |                                    |                                    |                              |                               |                             |                             |                               |                            | ო                                                           | 4                   | rO                        | ဖ                          | 7                            | 0 (18)                      |
|----------------------------------------------|---------------------|-----|------------------------------------|------------------------------------|------------------------------|-------------------------------|-----------------------------|-----------------------------|-------------------------------|----------------------------|-------------------------------------------------------------|---------------------|---------------------------|----------------------------|------------------------------|-----------------------------|
|                                              |                     |     | Key                                |                                    |                              | 1.0<br><b>H</b><br>hydrogen   |                             |                             |                               |                            | (13)                                                        | (14)                | (15)                      | (16)                       | (17)                         | 4.0<br><b>He</b><br>helium  |
| <u>.                                    </u> | 5                   | ati | relative atomic mass <b>symbol</b> | mass                               |                              |                               |                             |                             |                               |                            | 10.8<br><b>B</b>                                            | 12.0<br><b>C</b>    | 14.0<br><b>Z</b>          | 16.0<br><b>0</b>           | 19.0<br><b>F</b>             | 20.2<br><b>Ne</b>           |
| ato                                          | ato                 | mic | name<br>atomic (proton) number     | number                             |                              |                               |                             |                             |                               |                            | boron<br>5                                                  | carbon<br>6         | nitrogen<br>7             | oxygen<br>8                | fluorine<br>9                | neon<br>10                  |
|                                              |                     |     |                                    |                                    | ı                            |                               |                             |                             |                               |                            | 27.0<br><b>Al</b>                                           | 28.1<br><b>Si</b>   | 31.0                      |                            | 35.5<br><b>Q</b>             | 39.9<br><b>Ar</b>           |
| (3) (4)                                      | (4)                 |     | (2)                                | (9)                                | (2)                          | (8)                           | (6)                         | (10)                        | (11)                          | (12)                       | aluminium<br>13                                             | silicon<br>14       | phosphorus<br>15          |                            | chlorine<br>17               | argon<br>18                 |
| 45.0 47.9 <b>Sc T</b>                        | 47.9<br><b>T</b>    |     | 50.9                               | 52.0<br><b>Ç</b>                   | 54.9<br><b>M</b> n           | 55.8<br><b>Fe</b>             | 28.9<br><b>0</b>            | 58.7<br><b>Ni</b>           | 63.5<br><b>Cu</b>             | 65.4<br><b>Zn</b>          | 69.7<br><b>Ga</b>                                           | 72.6<br><b>Ge</b>   | 74.9<br><b>As</b>         | 79.0<br><b>Se</b>          | 79.9<br><b>Br</b>            | 83.8<br><b>Ž</b>            |
| scandium titanium 21 22                      | titaniu<br>22       | Ε   | vanadium<br>23                     | chromium<br>24                     | manganese<br>25              | iron<br>26                    | cobalt<br>27                | nickel<br>28                | copper<br>29                  | zinc<br>30                 | gallium<br>31                                               | germanium<br>32     | arsenic<br>33             | selenium<br>34             | bromine<br>35                | krypton<br>36               |
| 88.9 91.2 <b>X</b>                           | 91.2<br><b>Ž</b>    |     | 92.9<br><b>Nb</b>                  | 96.0<br><b>Mo</b>                  | [98]<br><b>Ic</b>            | 101.1<br><b>Ru</b>            | 102.9<br><b>Rh</b>          | 106.4<br><b>Pd</b>          | 107.9<br><b>Ag</b>            | 112.4<br><b>Cd</b>         | 114.8<br><b>In</b>                                          | 118.7<br><b>Sn</b>  | 121.8<br><b>Sb</b>        | 127.6<br><b>Te</b>         | 126.9<br><b> </b>            | 131.3<br><b>Xe</b>          |
| yttrium zirconium 39 40                      | zirconiu<br>40      | Ę   | niobium<br>41                      | Ę                                  | tec                          | ruthenium<br>44               | rhodium<br>45               | palladium<br>46             | silver<br>47                  | cadmium<br>48              | indium<br>49                                                | tin<br>50           | antimony<br>51            | tellurium<br>52            | iodine<br>53                 | xenon<br>54                 |
|                                              | 178.5<br><b>±</b>   |     | 180.9<br><b>Ta</b>                 | 183.8<br><b>W</b>                  | 186.2<br><b>Re</b>           | 190.2<br><b>Os</b>            | 192.2<br><b> r</b>          | 195.1<br><b>Pt</b>          | 197.0<br><b>Au</b>            | 200.6<br><b>Hg</b>         | 204.4                                                       | 207.2<br><b>Pb</b>  | 209.0<br><b>Bi</b>        | [209]<br><b>Po</b>         | [210]<br><b>At</b>           | [222]<br><b>Rn</b>          |
|                                              | hafniur<br>72       |     | tantalum<br>73                     | tungsten<br>74                     | rhenium<br>75                | osmium<br>76                  | iridium<br>77               | platinum<br>78              | blog<br>79                    | mercury<br>80              | thallium<br>81                                              | lead<br>82          | bismuth<br>83             | polonium<br>84             | astatine<br>85               | radon<br>86                 |
|                                              | [267]<br><b>Rf</b>  |     | [268]<br><b>Db</b>                 | [271]<br><b>Sg</b>                 |                              |                               |                             | [281]<br><b>DS</b>          | [280]<br><b>Rg</b>            |                            | Elements with atomic numbers 112-116 have been reported but | atomic num          | bers 112-1                | 16 have be                 | en reported                  | but                         |
| actinium rutherfordium<br>89 104             | rutherfordii<br>104 | Ę   | dubnium<br>105                     | seaborgium<br>106                  | bohrium<br>107               | hassium<br>108                | meitnerium<br>109           | darmstadtium<br>110         | roentgenium<br>111            |                            |                                                             | not fu              | not fully authenticated   | cated                      |                              |                             |
|                                              |                     |     | 140.1                              | 140.9                              | 144.2                        | [145]                         | 150.4                       | 152.0                       | 157.3                         | 158.9                      | 162.5                                                       | 164.9               | 167.3                     | 168.9                      | 173.1                        | 175.0                       |
| 58 - 71 Lanthanides                          |                     |     | Cerium<br>58                       | Pr Nd praseodymium neodymium 59 60 | <b>Nd</b><br>neodymium<br>60 | <b>Pm</b><br>promethium<br>61 | <b>Sm</b><br>samarium<br>62 | <b>Eu</b><br>europium<br>63 | <b>Gd</b><br>gadolinium<br>64 | <b>Tb</b><br>terbium<br>65 | <b>Dy</b><br>dysprosium<br>66                               | Ho<br>holmium<br>67 | <b>Er</b><br>erbium<br>68 | <b>Tm</b><br>thulium       | <b>Yb</b><br>ytterbium<br>70 | <b>Lu</b><br>lutetium<br>71 |
| † <b>90 – 103</b> Actinides                  |                     | 1   |                                    | 231.0 <b>Pa</b> protactinium       | 238.0<br><b>U</b><br>uranium | ig m                          | Pu<br>Pu<br>plutonium       | [243] <b>Am</b> americium   | (247) <b>Cm</b> curium        | _                          | Cf<br>Cf<br>californium                                     | eins                | _                         | [258]<br>Md<br>mendelevium | No<br>nobelium               | [262] <b>Lr</b> lawrencium  |
|                                              |                     | _   |                                    | 91                                 | 92                           | 93                            | 94                          | 92                          | 96                            | 97                         | 86                                                          | 66                  |                           | 101                        | 102                          | 103                         |