| Centre Number | | | Candidate Number | | | |---------------------|--|--|------------------|--|--| | Surname | | | | | | | Other Names | | | | | | | Candidate Signature | | | | | | General Certificate of Education Advanced Subsidiary Examination January 2009 # Chemistry CHEM1 **Unit 1** Foundation Chemistry Friday 9 January 2009 1.30 pm to 2.45 pm | For this paper you must have: | | |-------------------------------|--| | a calculator. | | ### Time allowed • 1 hour 15 minutes ### Instructions - Use black ink or black ball-point pen. - Fill in the boxes at the top of this page. - Answer all questions. - You must answer the questions in the spaces provided. **Answers written** in margins or on blank pages will not be marked. - All working must be shown. - Do all rough work in this book. Cross through any work that you do not want to be marked. - The Periodic Table/Data Sheet is provided as an insert. ### Information - The marks for questions are shown in brackets. - The maximum mark for this paper is 70. - Your answers to the questions in Section B should be written in continuous prose, where appropriate. - You will be marked on your ability to: - use good English - organise information clearly - use specialist vocabulary where appropriate. ### **Advice** You are advised to spend about 50 minutes on Section A and about 25 minutes on Section B. ### **SECTION A** Answer all questions in the spaces provided. - 1 In 1913 Niels Bohr proposed a model of the atom with a central nucleus, made up of protons and neutrons, around which electrons moved in orbits. After further research, the model was refined when the existence of energy levels and sub-levels was recognised. - 1 (a) Complete the following table for the particles in the nucleus. | Particle | Relative charge | Relative mass | |----------|-----------------|---------------| | proton | | | | neutron | | | (2 marks) | 1 | (b) | State | te the block in the Periodic Table to which the element tungsten, W, belongs | | |---|-----|-------|--|--------------| | | | ••••• | (| | | 1 | (c) | Isoto | opes of tungsten include ¹⁸² W and ¹⁸⁶ W | | | 1 | (c) | (i) | Deduce the number of protons in ¹⁸² W | | | | | | |
(1 mark) | | 1 | (c) | (ii) | Deduce the number of neutrons in ¹⁸⁶ W | | | | | | |
(1 mark) | | 1 | (d) | In order to detect the isotopes of tungsten using a mass spectrometer, a sample containing the isotopes must be vaporised and then ionised. | | | | | | |---|-----|---|---|------------------|------------------|------------------|-----------------| | 1 | (d) | (i) | Give two reasons why the sample must be ionised. | | | | | | | | | 1 | | | •••• | | | | | | 2 | | | | | | | | | 2 | ••••• | ••••• | ••••• | (2 marks) | | 1 | (d) | (ii) | State what can be adjudifferent isotopes to b | | - | r to enable ions | formed by the | | | | | | ••••• | ••••• | | (1 mark) | | 1 | (e) | State
182W | e and explain the differed and ¹⁸⁶ W | ence, if any, be | tween the chem | nical properties | of the isotopes | | | | Diffe | erence | | | | | | | | Expl | anation | | | | | | | | ••••• | | | | | (2 marks) | | 1 | (f) | | table below gives the reple of tungsten. | elative abunda | nce of each isot | ope in the mass | spectrum of a | | | | m/z | | 182 | 183 | 184 | 186 | | | | Rel | ative abundance/% | 26.4 | 14.3 | 30.7 | 28.6 | | | | | the data above to calculate. Give your answer | | | omic mass of th | is sample of | 12 | | | | Н | С | N | О | | |-----|---------------------------------|---|--|----------------------------|---|-------------------|------------| | | | Electronegativity | 2.1 | 2.5 | 3.0 | 3.5 | | | (a) | State the | meaning of the term | electroneg | ativity. | (2 marks) | | (b) | State the | strongest type of int | ermolecula | r force in the | e following | compound | S. | | | Methane | (CH ₄) | | | | | | | | Ammonia | a (NH ₃) | | | | | | | | | | | | | | (2 marks) | | (c) | | values in the table to
ween two molecules | - | _ | est type of i | ntermolecu | ılar force | (d) | Phosphor | | | | | | | | (d) | A molecu | rus is in the same groule of PH ₃ reacts with type of bond forme | oup of the F
h an H ⁺ ion | Periodic Tabl | le as nitroge
PH4 ⁺ ion. | :n. | (3 marks) | | (d) | A molecu
Name the
formed. | rus is in the same groule of PH ₃ reacts wit | oup of the F
h an H ⁺ ion
d when PH | Periodic Table to form a F | le as nitroge
PH4 ⁺ ion.
n H ⁺ and ex | n. | (3 marks) | | (d) | A molecul Name the formed. | rus is in the same groule of PH ₃ reacts with type of bond forme | oup of the F
h an H ⁺ ion
d when PH | Periodic Table to form a F | le as nitroge
PH4 ⁺ ion.
n H ⁺ and ex | n.
plain how t | (3 marks) | | (d) | A molecul Name the formed. | rus is in the same groule of PH ₃ reacts with type of bond forme | oup of the F
h an H ⁺ ion
d when PH | Periodic Table to form a F | le as nitroge
PH4 ⁺ ion.
n H ⁺ and ex | n.
plain how t | (3 marks) | | 2 | (e) | Arsenic is in the same group as nitrogen. It forms the compound AsH ₃ Draw the shape of an AsH ₃ molecule, including any lone pairs of electrons. Name the shape made by its atoms. | | |---|-----|---|--| | | | Shape | Name of shape | | | 2 | (f) | The boiling point of AsH ₃ is -62.5 °C and the boiling point of NH ₃ is -33.0 °C. Suggest why the boiling point of AsH ₃ is lower than that of NH ₃ | | | | | | | | | | | | | | | (1 mark) | | | 2 | (g) | Balance the following equation which shows how AsH ₃ can be made. | | | | | AsCl ₃ + NaBH ₄ \longrightarrow AsH ₃ + NaCl + BCl ₃ (1 mark) | | | | | | | Turn over for the next question | 3 | | | V) oxide (TiO ₂ , $M_r = 79.9$) is used as a white pigment in some paints. The in be made as shown in the following equation. | |---|-----|-------|--| | | | | $TiCl_4(1) + 2H_2O(1) \longrightarrow TiO_2(s) + 4HCl(aq)$ | | 3 | (a) | (i) | Calculate the percentage atom economy for the formation of ${\rm TiO_2}$ | | | | | | | | | | | | | | | (2 marks) | | 3 | (a) | (ii) | In view of the low atom economy of this reaction, suggest how a company can maximise its profits without changing the reaction conditions or the production costs. | | | | | | | | | Ţ. | (1 mark) | | 3 | (b) | In an | experiment 165 g of TiCl ₄ were added to an excess of water. | | 3 | (b) | (i) | Calculate the amount, in moles, of TiCl ₄ in 165 g. | | | | | | | | | | | | | | | (2 marks) | | 3 | (b) | (ii) | Calculate the maximum amount, in moles, of ${\rm TiO_2}$ which can be formed in this experiment. | | | | | | | | | | (1 mark) | | 3 | (b) | (iii) | Calculate the maximum mass of TiO ₂ formed in this experiment. | | | | | | | | | | (1 mark) | | | | | | | 3 | (b) | (iv) | In this experiment only $63.0\mathrm{g}$ of TiO_2 were produced. Calculate the percentage yield of TiO_2 | |---|-----|------|--| | | | | | | | | | | | | | | (1 m qub) | | | | | (1 mark) | | | | | | Turn over for the next question 8 | 4 | This | quest | ion is about the elements in Period 3 from Na to P | |---|------|-------|--| | 4 | (a) | (i) | Explain the meaning of the term first ionisation energy. | | | | | | | | | | | | | | | (2 marks) | | 4 | (a) | (ii) | State and explain the general trend in first ionisation energies for the elements Na to P | | | | | Trend | | | | | Explanation | | | | | | | | | | (2 marks) | | | | | (3 marks) | | 4 | (a) | (iii) | State which one of the elements from Na to P deviates from this general trend and explain why this occurs. | | | | | Element | | | | | Explanation | | | | | | | | | | | | | | | (3 marks) | | 4 | (b) | | which one of the elements from Na to P has the highest melting point and explain answer. | | | | Elen | nent | | | | Expl | anation | | | | | | | | | ••••• | (3 marks) | | 5 | A mo | etal ca | arbonate MCO ₃ reacts with hydrochloric acid as shown in the following equation. | |---|-------|-----------------|--| | | | | $MCO_3 + 2HCl \longrightarrow MCl_2 + H_2O + CO_2$ | | | A 0.5 | 548 g
ochlor | sample of MCO ₃ reacted completely with 30.7 cm ³ of 0.424 mol dm ⁻³ ric acid. | | 5 | (a) | (i) | Calculate the amount, in moles, of HCl which reacted with $0.548\mathrm{g}$ MCO $_3$ | | | | | | | | | | (1 mark) | | 5 | (a) | (ii) | Calculate the amount, in moles, of MCO_3 in 0.548 g. | | | | | | | | | | (1 mark) | | 5 | (a) | (iii) | Calculate the relative formula mass of MCO ₃ | | | | | | | | | | (1 mark) | | 5 | (b) | | your answer from part (a) (iii) to deduce the relative atomic mass of metal M and est its identity. | | | | (If y | ou have been unable to calculate a value for the relative formula mass of MCO ₃ should assume it to be 147.6 but this is not the correct answer.) | | | | Rela | tive atomic mass | | | | | | | | | ••••• | | | | | Iden | tity of M(2 marks) | | | | | | ### **SECTION B** | | Answer Question 6 in the spaces provided on pages 10 to 15. | | | | | | | |-------|---|--------|--|--|--|--|--| | 6 | Petrol contains saturated hydrocarbons. Some of the molecules in petrol have the mole formula C_8H_{18} and are referred to as octanes. These octanes can be obtained from cru by fractional distillation and by cracking suitable heavier fractions. | | | | | | | | | Petrol burns completely in a plentiful supply of air but can undergo incomplete combustion in a car engine. | | | | | | | | 6 | (a) State the meaning of both the words <i>saturated</i> and <i>hydrocarbon</i> as applied to the <i>saturated hydrocarbon</i> . | e term | | | | | | | | Name the homologous series to which C_8H_{18} belongs. | | | | | | | | | | | | | | | | | ••••• | | | | | | | | | ••••• | | | | | | | | | ••••• | | | | | | | | | ••••• | | | | | | | | | ••••• | (3 | marks) | 6 (b) Outline the essential features of the fractional distillation of crude oil that enable the crude oil to be separated into fractions. | |---| | | | | | | | | | | | (4 marks) | | | | Question 6 continues on the next page | 6 (c) | C_8H_{18} is obtained by the catalytic cracking of suitable heavy fractions. State what is meant by the term <i>cracking</i> and name the catalyst used in catalytic cracking. | |--------------|--| | | Write an equation to show how one molecule of $C_{14}H_{30}$ is cracked to form one molecule of C_8H_{18} and one molecule of another hydrocarbon. | | | Explain why oil companies need to crack 'suitable heavy fractions'. | | •••••• | | | | | | ••••• | | | ••••• | | | | | | ••••• | | | •••••• | | | | (4 marks) | 6 | (d) | Write an equation for the incomplete combustion of C_8H_{18} to form carbon monoxide and water only. | |-------|-------|---| | | | A catalytic converter is used to remove carbon monoxide from the exhaust gases in a car. Identify a catalyst used in the catalytic converter. | | | | Write an equation to show how carbon monoxide is removed in a catalytic converter. | | | | State why the water produced in the exhaust gases may contribute to global warming. | | | ••••• | | | ••••• | ••••• | | | ••••• | ••••• | | | ••••• | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | (4 marks) | | | | (4 marks) | | | | | | | | Question 6 continues on the next page | 6 | (e) | When some petrol was accidentally contaminated in 2007, the sensors in the affected cars caused a decrease in the supply of petrol to the engine. | |-------|-------|---| | | | Suggest the effect that the contaminated fuel would have on the performance of the cars. | | | | State how the oil company might have recognised the problem before the petrol was sold. | | ••••• | ••••• | | | | | | | | ••••• | (2 marks) | 6 | (f) | The molecular formula C_8H_{18} represents several structural isomers. | |-------|--------|--| | | | State what is meant by the term <i>structural isomers</i> . | | | | Name the following structural isomer of C ₈ H ₁₈ | | | | CH ₃ H CH ₃ | | | | $\begin{array}{c c} H_3C - C - C - C - CH_3 \\ & & \end{array}$ | | | | H H CH ₃ | | ••••• | ••••• | | | ••••• | ••••• | | | ••••• | ••••• | | | | ••••• | | | | ••••• | | | ••••• | •••••• | (3 marks) | ## END OF QUESTIONS # **GCE Chemistry Data Sheet** Table 1Infrared absorption data | Wavenumber /cm ⁻¹ | 3300-3500 | 3230-3550 | 2850-3300 | 2500-3000 | 2220-2260 | 1680 - 1750 | 1620 - 1680 | 1000 - 1300 | 750-1100 | |------------------------------|-----------------|-------------------|-----------|----------------|--------------|-------------|-------------|-------------|----------| | Bond | N-H
(amines) | O-H
(alcohols) | C-H | O-H
(acids) | $C \equiv N$ | C = 0 | C = C | C-O | C-C | | Bond | Wavenumber
/em ⁻¹ | |-------------------|---------------------------------| | N—H
(amines) | 3300-3500 | | O—H
(alcohols) | 3230-3550 | | C-H | 2850-3300 | | O—H
(acids) | 2500-3000 | | $C \equiv N$ | 2220-2260 | | C = 0 | 1680 - 1750 | | C = C | 1620 - 1680 | | C-O | 1000 - 1300 | | C-C | 750-1100 | | | | 2.1-2.6 3.1 - 3.9 3.1-4.2 RCH_2Cl or Br 3.7 - 4.1 0.5-5.0 0.7-1.2 1.0-4.5 1.2-1.4 1.4-1.6 $\begin{array}{l} RN\mathbf{H}_2 \\ R_2C\mathbf{H}_2 \\ R_3C\mathbf{H} \end{array}$ RCH_3 ROH δ/ppm Type of proton **Table 2**¹H n.m.r. chemical shift data **Table 3**¹³C n.m.r. chemical shift data | δ/ppm | 5-40 | 10-70 | 20-50 | 25-60 | 20-90 | 90-150 | 110-125 | 110-160 | 160-185 | 190 – 220 | |----------------|------|--------------|--|--|---|--------|----------------------|---------|---|--------------------------------| | Type of carbon | | R-C-Cl or Br | $\begin{matrix} \mathbf{R} - \mathbf{C} - \mathbf{C} \\ = - \mathbf{C} \\ \mathbf{O} \end{matrix}$ | $\begin{array}{c} \mathbf{R} - \mathbf{C} \\ - \mathbf{N} \end{array}$ | alcohols,
 -C-O- ethers or
 esters | C = C | $R\!-\!C\!\equiv\!N$ | | $\begin{array}{ccc} R-C- & \text{esters or} \\ \parallel & \text{acids} \\ O & \end{array}$ | R-C- aldehydes or ketones O | 9.0 - 10.0 4.5 - 6.0 10.0 - 12.0 # The Periodic Table of the Elements | | | | | | | | | | | | ო | 4 | rO | ဖ | 7 | 0 (18) | |--|---------------------|-----|------------------------------------|------------------------------------|------------------------------|-------------------------------|-----------------------------|-----------------------------|-------------------------------|----------------------------|---|---------------------|---------------------------|----------------------------|------------------------------|-----------------------------| | | | | Key | | | 1.0
H
hydrogen | | | | | (13) | (14) | (15) | (16) | (17) | 4.0
He
helium | | <u>. </u> | 5 | ati | relative atomic mass symbol | mass | | | | | | | 10.8
B | 12.0
C | 14.0
Z | 16.0
0 | 19.0
F | 20.2
Ne | | ato | ato | mic | name
atomic (proton) number | number | | | | | | | boron
5 | carbon
6 | nitrogen
7 | oxygen
8 | fluorine
9 | neon
10 | | | | | | | ı | | | | | | 27.0
Al | 28.1
Si | 31.0 | | 35.5
Q | 39.9
Ar | | (3) (4) | (4) | | (2) | (9) | (2) | (8) | (6) | (10) | (11) | (12) | aluminium
13 | silicon
14 | phosphorus
15 | | chlorine
17 | argon
18 | | 45.0 47.9 Sc T | 47.9
T | | 50.9 | 52.0
Ç | 54.9
M n | 55.8
Fe | 28.9
0 | 58.7
Ni | 63.5
Cu | 65.4
Zn | 69.7
Ga | 72.6
Ge | 74.9
As | 79.0
Se | 79.9
Br | 83.8
Ž | | scandium titanium 21 22 | titaniu
22 | Ε | vanadium
23 | chromium
24 | manganese
25 | iron
26 | cobalt
27 | nickel
28 | copper
29 | zinc
30 | gallium
31 | germanium
32 | arsenic
33 | selenium
34 | bromine
35 | krypton
36 | | 88.9 91.2 X | 91.2
Ž | | 92.9
Nb | 96.0
Mo | [98]
Ic | 101.1
Ru | 102.9
Rh | 106.4
Pd | 107.9
Ag | 112.4
Cd | 114.8
In | 118.7
Sn | 121.8
Sb | 127.6
Te | 126.9
 | 131.3
Xe | | yttrium zirconium 39 40 | zirconiu
40 | Ę | niobium
41 | Ę | tec | ruthenium
44 | rhodium
45 | palladium
46 | silver
47 | cadmium
48 | indium
49 | tin
50 | antimony
51 | tellurium
52 | iodine
53 | xenon
54 | | | 178.5
± | | 180.9
Ta | 183.8
W | 186.2
Re | 190.2
Os | 192.2
 r | 195.1
Pt | 197.0
Au | 200.6
Hg | 204.4 | 207.2
Pb | 209.0
Bi | [209]
Po | [210]
At | [222]
Rn | | | hafniur
72 | | tantalum
73 | tungsten
74 | rhenium
75 | osmium
76 | iridium
77 | platinum
78 | blog
79 | mercury
80 | thallium
81 | lead
82 | bismuth
83 | polonium
84 | astatine
85 | radon
86 | | | [267]
Rf | | [268]
Db | [271]
Sg | | | | [281]
DS | [280]
Rg | | Elements with atomic numbers 112-116 have been reported but | atomic num | bers 112-1 | 16 have be | en reported | but | | actinium rutherfordium
89 104 | rutherfordii
104 | Ę | dubnium
105 | seaborgium
106 | bohrium
107 | hassium
108 | meitnerium
109 | darmstadtium
110 | roentgenium
111 | | | not fu | not fully authenticated | cated | | | | | | | 140.1 | 140.9 | 144.2 | [145] | 150.4 | 152.0 | 157.3 | 158.9 | 162.5 | 164.9 | 167.3 | 168.9 | 173.1 | 175.0 | | 58 - 71 Lanthanides | | | Cerium
58 | Pr Nd praseodymium neodymium 59 60 | Nd
neodymium
60 | Pm
promethium
61 | Sm
samarium
62 | Eu
europium
63 | Gd
gadolinium
64 | Tb
terbium
65 | Dy
dysprosium
66 | Ho
holmium
67 | Er
erbium
68 | Tm
thulium | Yb
ytterbium
70 | Lu
lutetium
71 | | † 90 – 103 Actinides | | 1 | | 231.0 Pa protactinium | 238.0
U
uranium | ig m | Pu
Pu
plutonium | [243] Am americium | (247) Cm curium | _ | Cf
Cf
californium | eins | _ | [258]
Md
mendelevium | No
nobelium | [262] Lr lawrencium | | | | _ | | 91 | 92 | 93 | 94 | 92 | 96 | 97 | 86 | 66 | | 101 | 102 | 103 |