| Centre Number | | | Candidate Number | | | |---------------------|--|--|------------------|--|--| | Surname | | | | | | | Other Names | | | | | | | Candidate Signature | | | | | | General Certificate of Education Advanced Subsidiary Examination June 2009 ### Chemistry CHEM2 ### Unit 2 Chemistry In Action Thursday 11 June 2009 1.30 pm to 3.15 pm ### For this paper you must have: - Periodic Table/Data Sheet provided as an insert (enclosed). - a calculator. ### Time allowed • 1 hour 45 minutes ### Instructions - Use black ink or black ball-point pen. - Fill in the boxes at the top of this page. - Answer all questions. - You must answer the questions in the spaces provided. **Answers written** in margins or on blank pages will not be marked. - All working must be shown. - Do all rough work in this book. Cross through any work you do not want to be marked. - The Periodic Table/Data Sheet is provided as an insert. ### Information - The marks for questions are shown in brackets. - The maximum mark for this paper is 100. - Your answers to the questions in Section B should be written in continuous prose, where appropriate. - You will be marked on your ability to: - use good English - organise information clearly - use specialist vocabulary where appropriate. ### **Advice** You are advised to spend about 1 hour 15 minutes on Section A and about 30 minutes on Section B. # Examiner's Initial Question Mark 1 2 3 4 5 6 7 8 9 10 11 TOTAL ### Section A Answer all the questions in the spaces provided. 1 Sodium thiosulfate solution (Na₂S₂O₃) reacts slowly with dilute hydrochloric acid to form a precipitate. The rate of this reaction can be studied by measuring the time (*t*) that it takes for a small fixed amount of precipitate to form under different conditions. The fixed amount of precipitate is taken as the amount needed to obscure a cross on paper. The equation for this reaction is shown below. | | | | $Na_2S_2O_3 + 2HCl \longrightarrow 2NaCl + S + SO_2 + H_2O$ | |---|-----|-------|---| | 1 | (a) | Iden | tify the insoluble product of this reaction which forms the precipitate. | | | | | (1 mark) | | 1 | (b) | | In this reaction takes place, the collision between the reacting particles requires an ration energy. State what is meant by the term <i>activation energy</i> . | | | | ••••• | | | | | | (2 marks) | | 1 | (c) | this | rms of particles, explain why, at a fixed temperature, you might expect the rate of reaction to double when the concentration of sodium thiosulfate is doubled and the entration of hydrochloric acid remains the same. | | | | | | | | | ••••• | | | | | | | | | | | | | | | | (2 marks) | | 1 | (d) | (i) | State what is meant by the term <i>rate of reaction</i> . | | | | | | | | | | /7 1) | | | | | (1 mark) | | 1 | (d) | (ii) | Consider the description of the way in which this experiment is carried out. Use your understanding of the term <i>rate of reaction</i> to explain why it is possible to use a simplified formula $\frac{1}{t}$ as a measure of the rate of this reaction. | | |---|-----|------|---|--| | | | | | | | | | | (1 mark) | | Turn over for the next question 2 Barium can be extracted from barium oxide (BaO) in a process using aluminium. A mixture of powdered barium oxide and powdered aluminium is heated strongly. The equation for this extraction process is shown below. $$3BaO(s) + 2Al(s) \longrightarrow 3Ba(s) + Al_2O_3(s)$$ Some standard enthalpies of formation are given in the table below. | Substance | BaO(s) | Al ₂ O ₃ (s) | |--|--------|------------------------------------| | $\Delta H_{\rm f}^{\Theta}/{\rm kJmol}^{-1}$ | -558 | -1669 | | 2 | (a) | (i) | State what is meant by the term standard enthalpy of formation. | |---|-----|-------|--| (3 marks) | | 2 | (a) | (ii) | State why the standard enthalpy of formation of barium and that of aluminium are both zero. | | | | | (1 mark) | | 2 | (a) | (iii) | Use the data to calculate the standard enthalpy change for the reaction shown by the equation above. | 2 | (b) | (i) | Suggest the major reason why this method of extracting barium is expensive. | |---|-----|-------|--| | | | | | | | | | (1 mark) | | 2 | (b) | (ii) | Using barium oxide and aluminium powders increases the surface area of the reactants. Suggest one reason why this increases the rate of reaction. | | | | | (1 mark) | | 2 | (c) | (i) | Write an equation for the reaction of barium with water. | | | | | (1 mark) | | 2 | (c) | (ii) | A solution containing barium ions can be used to test for the presence of sulfate ions in an aqueous solution of sodium sulfate. | | | | | Write the simplest ionic equation for the reaction which occurs and state what is observed. | | | | | Simplest ionic equation | | | | | | | | | | Observation | | 2 | (c) | (iii) | State how barium sulfate can be used in medicine. Explain why this use is possible, given that solutions containing barium ions are poisonous. | | | | | Use | | | | | Explanation | | | | | (2 marks) | 14 3 A group of students devised an experiment which they believed would enable them to investigate the strength of the intermolecular forces between ethyl ethanoate molecules (CH₃COOCH₂CH₃) and trichloromethane molecules (CHCl₃). They mixed exactly 0.10 mol of each of the two liquids in a copper calorimeter and recorded the following results. The starting temperature of both liquids was the same. | Mass of 0.10 mol of ethyl ethanoate/g | 8.80 | |--|-------| | Mass of 0.10 mol of trichloromethane/g | 11.95 | | Increase in temperature (ΔT) on mixing/K | 9.5 | | 3 | (a) | (i) | Write an expression for the heat change (q) which relates mass (m) , specific heat capacity (c) and change in temperature (ΔT) . | |---|-----|-------|---| | | | | (1 mark) | | 3 | (a) | (ii) | Calculate the amount of heat required to increase the temperature of 8.80 g of ethyl ethanoate by 9.5 K during the mixing process. (You should assume that c for ethyl ethanoate = 1.92 J $g^{-1}K^{-1}$) | | | | | (1 mark) | | 3 | (a) | (iii) | Calculate the amount of heat required to increase the temperature of 11.95 g of trichloromethane by 9.5 K during the mixing process. (You should assume that c for trichloromethane = 0.96 J $g^{-1}K^{-1}$) | | | | | (1 mark) | | 3 | (a) | (iv) | Using the values from parts (a) (ii) and (a) (iii), calculate the molar enthalpy change in kJ mol ⁻¹ for the mixing process. | | | | | | | | | | (2 marks) | | 3 | (b) | The students deduced that the heat change was due only to the formation of intermolecular forces between ethyl ethanoate molecules and trichloromethane molecules. | |---|-----|--| | | | Ignoring all experimental errors, give one reason why the students may have made an incorrect deduction. | | | | | | | | (1 mark) | Turn over for the next question | 4 | | bon monoxide and hydrogen are used in the manufacture of methanol. An equilibrium is ablished according to the following equation. | | | | | | |---|-----|--|--|--|--|--|--| | | | C | Cu catalyst $C(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ $\Delta H = -91 \text{ kJ mol}^{-1}$ | | | | | | 4 | (a) | Give | two features of a reaction at equilibrium. | | | | | | | | Feat | ure 1 | | | | | | | | | | | | | | | | | Feat | ure 2 | | | | | | | | ••••• | (2 marks | | | | | | 4 | (b) | - | ain why an increase in temperature causes a decrease in the equilibrium yield of anol. | | | | | | | | | | | | | | | | | ••••• | | | | | | | | | ••••• | (2 marks | | | | | | 4 | (c) | (i) | State what is meant by the term <i>catalyst</i> . | | | | | | | | | | | | | | | | | | (1 mark | | | | | | 4 | (c) | (ii) | State the effect, if any, of the copper catalyst on the position of this equilibrium at a fixed temperature. | | | | | | | | | (1 mark | 4 | (d) | Two methods are used to produce carbon monoxide from natural gas. E | quations for | |---|-----|---|--------------| | | | these two methods are shown below. | | | | | | | The manufacture of methanol from these sources of carbon monoxide has been described as carbon neutral. | 4 | (d) | (i) | State what is meant by the term <i>carbon neutral</i> . | |---|-----|-----|---| (1 mark) | 4 | (d) | (ii) | Show how combining the equations from these two methods can lead to the 1:2 mol ratio of carbon monoxide to hydrogen required for this synthesis of methanol. | |---|-----|------|---| | | | | | | | | | | | | | | | (1 mark) Turn over for the next question | 5 | This question is about the extraction of metals. | | | |---|--|-------|--| | 5 | (a) | | e is mainly carbon and is a raw material used in the extraction of iron from (III) oxide. | | 5 | (a) | (i) | Write an equation for the formation of carbon monoxide from carbon. | | | | | | | | | | (1 mark) | | 5 | (a) | (ii) | Write an equation for the reduction of iron(III) oxide to iron by carbon monoxide. | | | | | (1 mark) | | 5 | (a) | (iii) | The Earth's resources of iron(III) oxide are very large and commercial ores have a high iron content. Give one economic and one environmental reason for recycling scrap iron and steel. | | | | | Economic reason | | | | | | | | | | Environmental reason | | | | | (2 marks) | | 5 | (b) | | titanium is extracted by the reduction of titanium(IV) chloride, but not by the et reduction of titanium(IV) oxide using carbon. | | 5 | (b) | (i) | Write an equation for the conversion of titanium(IV) oxide into titanium(IV) chloride. | | | | | (2 marks) | | 5 | (b) | (ii) | Write an equation for the extraction of titanium from titanium(IV) chloride. | | | | | (2 marks) | | 5 | (b) | (iii) | State why titanium is not extracted directly from titanium(IV) oxide using carbon. | | |---|-----|-------|--|-------------| | | | | (1 | mark) | | 5 | (c) | Alur | minium is extracted by the electrolysis of a molten mixture containing aluminule. | nium | | 5 | (c) | (i) | State why the electrolysis needs to be of a <i>molten</i> mixture. | | | | | | (1 |
' mark) | | 5 | (c) | (ii) | Write an equation for the reaction of oxide ions at the positive electrode du the electrolysis. | ıring | | | | | (1 |
' mark) | | 5 | (c) | (iii) | State why the positive electrodes need frequent replacement. | | | | | | (1 | mark) | | 5 | (c) | (iv) | Give the major reason why it is less expensive to recycle aluminium than to extract it from aluminium oxide by electrolysis. | 0 | | | | | (1 | ' mark) | Turn over for the next question | 6 | Acidified silver nitrate solution can be used to identify and distinguish between halide ions in solution. | | | |---|--|---|--| | 6 | (a) | Explain why hydrochloric acid should not be used to acidify the silver nitrate. | | | | | | | | | | (1 mark) | | | 6 | (b) | State and explain what would be observed when acidified silver nitrate solution is added to a solution of sodium fluoride. | | | | | Observation | | | | | Explanation | | | | | (2 marks) | | | 6 | (c) | State what would be observed when acidified silver nitrate solution is added to a solution containing iodide ions. Write the simplest ionic equation for the reaction that occurs. | | | | | Observation | | | | | Equation | | | | | (2 marks) | 7 | The reaction of bromine with an alkene is used in a test to show that the alkene is unsaturated. | | | | |---|--|-------|---|-----------| | 7 | (a) | State | e what is meant by the term <i>unsaturated</i> as applied to an alkene. | | | | | ••••• | | (1 mark) | | 7 | (b) | Nam | ne and outline a mechanism for the reaction of bromine with but-2-ene. | | | | | Nam | ne of mechanism | | | | | Mec | hanism | _ | | ъ. | | (5 marks) | | 7 | (c) | | 2-ene can exist as a pair of stereoisomers. | | | 7 | (c) | (i) | State what is meant by the term <i>stereoisomers</i> . | | | | | | | ••••• | | | | | | | | | | | | (2 marks) | | 7 | (c) | (ii) | Draw the structure of (E) -but-2-ene. | (1 mark) | Turn over ▶ 9 8 Nucleophiles react with bromoethane in substitution reactions. This type of reaction is illustrated in the following scheme. (a) State what is meant by the term *nucleophile*. (1 mark) Outline a mechanism for the reaction of potassium cyanide with bromoethane (b) (Reaction 1). (2 marks) (c) Explain why an excess of ammonia is needed in Reaction 2 to produce a high yield of ethylamine. (1 mark) 8 | 8 (d) | When potassium hydroxide reacts with bromoethane, ethene can also be formed. Name and outline a mechanism for this reaction. | |--------------|--| | | Name of mechanism | | | Mechanism | | | | | | | | | | | | | | | (4 marks) | | | | | | Turn over for the next question | | | | Butan-2-ol can be oxidised by acidified potassium dichromate(VI) to form butanone as shown by the following equation. $$CH_3CH_2CH(OH)CH_3 + [O] \longrightarrow CH_3CH_2COCH_3 + H_2O$$ 9 (a) State the class of alcohol to which butan-2-ol belongs. (1 *mark*) The infrared spectrum shown below is either that of butan-2-ol or that of butanone. (b) Identify the compound to which this infrared spectrum refers. Explain your answer. You may find it helpful to refer to the table of infrared absorption data on the back of the Periodic Table (Table 1). | Explanation | | |--------------------------|--| | Identity of the compound | | (3 marks) | 9 | (c) | Draw the displayed formula of the alcohol C ₄ H ₉ OH which is resistant to oxidation by acidified potassium dichromate(VI). | | |---|-----|---|--| (1 mark) | | | | | | | Turn over for the next question ### **Section B** Answer both questions in the spaces provided. 10 In the past 150 years, three different processes have been used to extract bromine from potassium bromide. These processes are illustrated below. Extraction Process 1 $$2KBr + MnO_2 + 2H_2SO_4 \longrightarrow MnSO_4 + K_2SO_4 + 2H_2O + Br_2$$ Extraction Process 2 The reaction of solid potassium bromide with concentrated sulfuric acid. Extraction Process 3 The reaction of aqueous potassium bromide with chlorine gas. Write a half-equation for the conversion of MnO₂ in acid solution into Mn²⁺ ions and water. In terms of electrons, state what is meant by the term *oxidising agent* and identify the oxidising agent in the overall reaction. | 10 | (b) | Write an equation for Extraction Process 2 and an equation for Extraction Process 3. Calculate the percentage atom economy for the extraction of bromine from potassium | |----|-----|--| | | | bromide by Extraction Process 3. Suggest why Extraction Process 3 is the method in large-scale use today. | (5 marks) | | | | | | | | | | | | Question 10 continues on the next page | 10 | (c) | The following equilibrium is established when bromine is added to water. | |----|-----|--| | | | $Br_2 + H_2O \Longrightarrow HBrO + HBr$ | | | | Give the oxidation state of bromine in HBr and in HBrO | | | | Deduce what will happen to this equilibrium as the HBrO reacts with micro-organisms in the swimming pool water. Explain your answer. | (4 marks) 12 | 11 | One of the first substances used as an anaesthetic in medicine was chloroform | |----|---| | | (trichloromethane, CHCl ₃). By 1950, halothane was in common use but by 1990 this had | | | been replaced by more acceptable anaesthetics such as desflurane. | CF₃CHBrCl halothane CF₃CHFOCHF₂ desflurane One reason for replacing *halothane* was that it is an organic compound that contains chlorine. Chlorine-containing organic compounds are thought to cause damage to the ozone layer in the upper atmosphere. | 11 | (a) | chloromethane (CH ₃ Cl). | |----|-----|---| | | | Write an overall equation for the reaction of chlorine with methane to form | | richloromethane (CHCl ₃). | | |---------------------------------------|------------| | | ••••• | | | ••••• | | | | | | | | | | | | ••••• | | | ••••• | | | ••••• | | |
marks) | Question 11 continues on the next page | 11 (b) | Explain how chlorine atoms are formed from chlorine-containing organic compounds in the upper atmosphere. | | |---------------|---|--| | | Explain, with the aid of equations, how chlorine atoms act as a catalyst in the decomposition of ozone into oxygen. | (6 marks) | 11 (c) | Use the formulae of the two anaesthetics, <i>halothane</i> and <i>desflurane</i> , to help to explain why <i>desflurane</i> is considered to be a more environmentally acceptable anaesthetic than <i>halothane</i> . | |---------------|--| | | | | | | | | | | | (2 marks) | | | (2 metrus) | | | | END OF QUESTIONS 13 ### **GCE Chemistry Data Sheet** Infrared absorption data Table 1 **Table 2**¹H n.m.r. chemical shift data | Bond | Wavenumber
/cm ⁻¹ | |-------------------|---------------------------------| | N—H
(amines) | 3300-3500 | | O—H
(alcohols) | 3230-3550 | | H-C | 2850-3300 | | O—H
(acids) | 2500-3000 | | $C \equiv N$ | 2220-2260 | | 0 = 0 | 1680 - 1750 | | C = C | 1620 - 1680 | | 0-0 | 1000 - 1300 | | C - C | 750-1100 | **Table 3**¹³C n.m.r. chemical shift data δ/ppm 5 - 40 10 - 70 20-50 25-60 50 - 90 alcohols, ethers or esters | Type of proton | δ/ppm | Type of carbon | |-----------------------------|------------|--| | ROH | 0.5-5.0 | | | RCH_3 | 0.7 - 1.2 |
 -
 - | | \mathbf{RNH}_2 | 1.0 - 4.5 | - ζ | | $\mathbf{R}_2\mathbf{CH}_2$ | 1.2 - 1.4 | $\mathbf{K} - \mathbf{C} - \mathbf{C} \mathbf{I}$ or $\mathbf{B} \mathbf{r}$ | | R_3CH | 1.4 - 1.6 | — Ç | | R-C-C- | 2.1–2.6 | | | H 0 | | _ | | R-0-C- | 3.1–3.9 | $\mathbf{R} - \mathbf{C} - \mathbf{N}$ | | H | | alcoh alcoh | | RCH ₂ Cl or Br | 3.1 - 4.2 | $-\mathbf{C}$ -0 ether | | R-C-O-C- | 3.7 - 4.1 | | | −H
=0 | | | | R H | | $\mathbf{R}\!-\!\mathbf{C}\!\equiv\!\mathbf{N}$ | | C = C | 4.5-6.0 | | | 0 | | | | $\mathrm{R-C}$ | 9.0 - 10.0 | R-C- esters of | | H | | acids
O | | R-C | 10.0-12.0 | R—C— aldehyd | | $\mathbf{H} - 0$ | | | | | | | 90 - 150 110 - 125 110 - 160 160 - 185 esters or acids 190 - 220 aldehydes or ketones ## The Periodic Table of the Elements | | | | | | | | | | | | ო | 4 | ro | 9 | ٧ | 0 (18) | |-------------------------------|---------------------|-----|------------------------------------|------------------------------------|------------------------------------|---------------------------------------|------------------------------|------------------------------|------------------------------------|----------------------------|-------------------------------|--------------------------------|---|-----------------------------|------------------------------|-----------------------------| | | | | Key | | | 1.0
T
hydrogen | | | | | (13) | (14) | (15) | (16) | (17) | 4.0
He
helium | | <u>e</u> | 5 | ati | relative atomic mass symbol | mass | | | | | | | 10.8
B | 12.0
C | 14.0
N | 16.0
0 | 19.0
F | 20.2
Ne | | oeryllium
4 ato | ato | Ä | name
atomic (proton) number | number | | | | | | | boron
5 | carbon
6 | nitrogen
7 | oxygen
8 | fluorine
9 | neon
10 | | | | | | | | | | | | | 27.0
Al | 28.1
Si | 31.0
P | | 35.5
C | 39.9
Ar | | magnesium (3) (4) | (4) | | (2) | (9) | 0 | (8) | (6) | (10) | (11) | (12) | aluminium
13 | silicon
14 | phosphorus
15 | sulfur
16 | chlorine
17 | argon
18 | | 45.0 47.9 Sc Ti | 47.9
T | | 50.9
V | 52.0
Cr | 54.9
Mn | 55.8
Fe | 58.9
Co | 58.7
Ni | 63.5
Cu | 65.4
Zn | 69.7
69. 7 | 72.6
Ge | 74.9
As | 79.0
Se | 79.9
Br | 83.8
Kr | | scandium titanium 21 22 | titaniur
22 | E | vanadium
23 | chromium
24 | manganese
25 | iron
26 | cobalt
27 | nickel
28 | copper
29 | zinc
30 | gallium
31 | germanium
32 | arsenic
33 | selenium
34 | bromine
35 | krypton
36 | | 88.9 91.2 X | 91.2
Zr | | 92.9
Nb | 96.0
Mo | [98]
Tc | 101.1
Ru | 102.9
Rh | 106.4 Pd | 107.9
Ag | 112.4
Cd | 114.8
In | 118.7
Sn | 121.8
Sb | 127.6
Te | 126.9
 | 131.3
Xe | | i | zirconiu
40 | Ę | niobium
41 | molybdenum
42 | ţec | ruthenium
44 | rhodium
45 | palladium
46 | silver
47 | cadmium
48 | indium
49 | tin
50 | antimony
51 | tellurium
52 | iodine
53 | xenon
54 | | | 178.£ | | 180.9
Ta | 183.8
W | 186.2
Re | 190.2
Os | 192.2
Ir | 195.1
Pt | 197.0
Au | 200.6
Hg | 204.4
T | 207.2
Pb | 209.0
Bi | [209]
Po | [210]
At | [222]
Rn | | | | ۶ | tantalum
73 | tungsten
74 | rhenium
75 | osmium
76 | iridium
77 | platinum
78 | blog
79 | mercury
80 | thallium
81 | lead
82 | bismuth
83 | polonium
84 | astatine
85 | radon
86 | | | [267]
Rf | | [268]
Db | [271]
Sg | [272]
Bh | | [276]
Mt | [281]
DS | [280]
Rg | Elen | nents with | atomic num | Elements with atomic numbers 112-116 have been reported but | 16 have be | en reported | but | | actinium rutherfordium 89 104 | rutherfordii
104 | Ę | dubnium
105 | seaborgium
106 | bohrium
107 | hassium
108 | meitnerium
109 | darmstadtium
110 | roentgenium
111 | | | not fu | not fully authenticated | cated | | | | | | | 140.1 | 140.9 | 144.2 | [145] | 150.4 | 152.0 | 157.3 | 158.9 | 162.5 | 164.9 | 167.3 | 168.9 | 173.1 | 175.0 | | 58 – 71 Lanthanides | | | Ce
cerium
58 | Pr Nd praseodymium neodymium 59 60 | Nd
neodymium
60 | Pm
promethium
61 | Sm
samarium
62 | Eu
europium
63 | Gd
gadolinium
64 | Tb
terbium
65 | Dy
dysprosium
66 | Ho holmium 67 | Er
erbium
68 | Tm
thulium
69 | Yb
ytterbium
70 | Lu
lutetium
71 | | † 90 - 103 Actinides | | 1 | | 231.0 Pa protactinium 91 | 238.0
U
uranium
92 | [237]
Np
neptunium
93 | [244] Pu plutonium 94 | [243] Am americium 95 | [247]
Cm
curium
96 | _ | Cf
californium
98 | [252] ES einsteinium 99 | _ | [258] Md mendelevium | No
nobelium | [262] Lr lawrencium | | | | | | | | | | | | | | | - 1 | | | |