

General Certificate of Education

Mathematics 6360 Statistics 6380

MS/SS1A/W Statistics 1A

Mark Scheme

2009 examination - January series

Standardisation

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviation	ns used in marking
-------------------------------------	--------------------

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
E	mark is for explanation					
$\sqrt{100}$ or ft or F	fallow through from provide					
\checkmark of it of F	follow through from previous incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct x marks for each error	G	graph			
NMS	no method shown	с	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
<u> </u>	Mean = $\frac{\sum fx}{\sum x} = \frac{247}{52} = 4.75$ or $4^{3}/_{4}$	B2	Total	$\frac{247}{52} \Rightarrow B1$ CAO (4.75 = 5 \Rightarrow ISW)
	If B0 but evidence of $\frac{\sum fx}{52}$ Median (26, 26 ¹ / ₂) = 5	(M1)		$4\frac{39}{52} \Rightarrow B2$
	We diam $(20, 20/2) = 5$	B2		CAO
		(B1)		Stated identification of 26 or $26\frac{1}{2}$
	If B0 but evidence of cumulative frequencies F: (0) 1 3 12 25 32 45 51 52 or If data assumed continuous so use of $4 + \frac{x}{7}$ where $0 < x < 2$	(M1)		Need to see attempt at ≥ 4 <i>F</i> -values (4 < median < 4.29)
	Mode(s) = 4 and 6	B1	5	CAO both (so mode = $5 \Rightarrow B0$)
(b)	Mode(s)	B1		САО
	More than one mode/value			Or equivalent; eg not unique
	Two modes/values No unique mode/value	B1dep		Dep only on previous B1 scored
	Notes: If data treated as two separate sets, then only marks available are B1 B1dep in (b) If averages confused then mark (a) as stated eg median = 4 and $6 \Rightarrow B0$ in (a) and in (b) "median, as two values" $\Rightarrow B0 B0$		2	Modes = 1 and $13 \Rightarrow B0$ in (a) but B1 B1dep available in (b)
		Total	7	

Probably incorrect Expect height to increase with age Expect positive value Definitely incorrect Value of r cannot exceed 1 Probably correct	B1 B1 B1 B1	2	CAO Or equivalent CAO
Expect positive value Definitely incorrect Value of r cannot exceed 1	B1		CAO
Value of r cannot exceed 1		2	
	B1	2	
Probably correct			Or equivalent
	B1		САО
Expect weight to increase with age	B1	2	Or equivalent
	Total	6	
B(50, 0.15)	M1		Used at least once in (a)
P(E = 6) = 0.3613 - 0.2194			Accept 3 dp accuracy
$=\binom{50}{6}(0.15)^6(0.85)^{44}$	M1		Either expression
= 0.142	A1	3	AWRT (0.1419)
$P(6 < E \le 12) = 0.9699$ or 0.9372	M1		Accept 3 dp accuracy / truncation
minus 0.3613 or 0.2194	M1		Accept 3 dp accuracy
= 0.608 to 0.609	A1		AWFW (0.6086)
B(50, 0.15) expressions stated for at least 3 terms within $6 \le E \le 12$ gives	(M1)		Or implied by a correct answer
probability = 0.608 to 0.609	(A2)	3	AWFW
Mean, $\mu = np = 80 \times 0.15 = 12$ Variance $\sigma^2 = np(1-p)$	B1		САО
$= 80 \times 0.15 \times 0.85 = 10.2$	B1	2	CAO; or equivalent
	B(50, 0.15) B(50, 0.15) B(E = 6) = 0.3613 - 0.2194 r = $\binom{50}{6}(0.15)^6(0.85)^{44}$ = 0.142 C(6 < E ≤ 12) = 0.9699 or 0.9372 minus 0.3613 or 0.2194 = 0.608 to 0.609 OR B(50, 0.15) expressions stated for at east 3 terms within 6 ≤ E ≤ 12 gives robability = 0.608 to 0.609 Mean, $\mu = np = 80 \times 0.15 = 12$ Variance, $\sigma^2 = np(1-p)$	$B(50, 0.15)$ $E = 6) = 0.3613 - 0.2194$ $F = {\binom{50}{6}}(0.15)^6 (0.85)^{44}$ $= 0.142$ $M1$ $= 0.142$ $M1$ $M1$ $= 0.142$ $M1$ $M1$ $= 0.608 \text{ to } 0.609$ $M1$ $= 0.608 \text{ to } 0.609$ $M1$ $= 0.608 \text{ to } 0.609$ $M1$ $(M1)$ $= 0.608 \text{ to } 0.609$ $M1$ $(M1)$ $(A2)$ $M2$ $M3$ $M3$ $M4$ $M4$ $M4$ $M4$ $M4$ $M4$ $M4$ $M4$	Total Total 6 B(50, 0.15) M1 $(E = 6) = 0.3613 - 0.2194$ M1 r $= \begin{pmatrix} 50 \\ 6 \end{pmatrix} (0.15)^6 (0.85)^{44}$ M1 r $= 0.142$ A1 3 $r(6 < E \le 12) = 0.9699$ or 0.9372 M1 M1 minus 0.3613 or 0.2194 M1 M1 $= 0.608$ to 0.609 A1 M1 M1 $= 0.608$ to 0.609 M1 M1 M1 $= 0.608$ to 0.609 M1 M1 M1 $= 0.608$ to 0.609 M2 M1 M2 $= 0.608$ to 0.609 M2 M1 M2 $= 0.608$ to 0.609 M2 M2 M2 $Mean, \mu = np = 80 \times 0.15 = 12$ B1 M2 M2 $Variance, \sigma^2 = np(1-p)$ B1 2 M2

MS/SS1A/W (cont)

Q	Solution	Marks	Total	Comments
4	$P(C) = 0.6 P(C \cap B) = 0.25$			In (a), ratios (eg 4 : 10) are only
	$\{P(C \text{ only}) = 0.35 P(B \text{ only}) = 0.4\}$			penalised by 1 mark at first correct answer
(a)(i)	P(C') = 1 - P(C) = 1 - 0.6 = 0.4	B1	1	CAO; or equivalent
(a)(l)		DI	1	crio, or equivalent
(ii)	$P(C \cap B') = 0.6 - 0.25 = 1 - (0.4 + 0.25)$	M1		Can be implied by correct answer
	= 0.35	A1	2	CAO; or equivalent
(iii)	P(B) = (i) + p with p < 0.6 = (i) + 0.25 = 0.65	M1 A1 A1		Can be implied by correct answer Can be implied by correct answer CAO; or equivalent
	OR P(B) = 1 - (ii) = 0.65	(M2) (A1)		Can be implied by correct answer
	OR $1 = P(C) + P(B) - P(C \cap B)$ Thus $P(B) = 1 - (0.6 - 0.25)$ = 0.65	(M1) (A1) (A1)	3	Can be implied by correct answer Can be implied by correct answer CAO; or equivalent
(b)	$P(L G_{C}) = 0.9 P(L G_{CB}) = 0.7$ $P(L G_{B}) = 0.3$			
	$P(G \cap L) \Rightarrow (a)(ii) \times 0.9$ (0.315)	M1		Follow through or correct
	0.25×0.7 (0.175)	M1		
	$[(a)(iii) - 0.25] \times 0.3$ (0.12)	M1		Follow through or correct
	Note: Each pair of multiplied probabilities must be > 0 to score the corresponding method mark			Ignore any multiplying factors Ignore any additional terms
	$\Rightarrow 0.315 + 0.175 + 0.12 = 0.61$	A1	4	САО
		Total	10	

MS/SS1A/W (cont)

NI5/551A/W Q	Solution	Marks	Total	Comments
5(a)	Mean = $\frac{1620}{30}$ = 54	B1	1	CAO; cannot be gained in (b)
(b)	$98\%(0.98) \implies z = 2.32$ to 2.33	B1		AWFW (2.3263)
	CI for μ is $\overline{x} \pm z \times \frac{\sigma}{\sqrt{n}}$	M1		Used Must have \sqrt{n} with $n > 1$
	Thus $54 \pm 2.3263 \times \frac{8}{\sqrt{30}}$	A1F		F on \overline{x} (but not 1620) and z only Allow $\overline{x} = 54$ even if B0 in (a)
	Hence $54 \pm (3.38 \text{ to } 3.42)$ or $(50.58 \text{ to } 50.62, 57.38 \text{ to } 57.42)$	A1	4	CAO & AWFW (54 & 3.4) AWFW (50.6, 57.4)
(c)	Notes: Use of $n = 1$ in (b) must not be deemed as answer to (c) Use of $n = 1$ in (b) followed by use of n $= 1$ in (c) \Rightarrow (b) B1, (c) M1 A1 max Use of $n = 1$ with (b) or (c) not identified \Rightarrow (b) B1, (c) 0 max			
	and $1.96 \le z \le 3.03$	M1		Or equivalent CAO & AWFW (54 & 18.6)
	Thus $54 \pm (18.56 \text{ to } 18.64)$ or	A1F	2	If z-value incorrect, then must use 54 \pm 8×[z from(b)]
	(35.36 to 35.44, 72.56 to 72.64)			AWFW (35.4, 72.6)
	Note: Accept sensible non-symmetric intervals such as: $(0, 54 + 2.0537 \times 8)$ = (0, 70.4 to 70.5)			
		Total	7	

Q	Solution	Marks	Total	Comments
6(a)	Figure 1: 3 correct labelled points 2 correct labelled points	B2 (B1)	2	Deduct 1 mark if not labelled
(b)	h(andiant) = 0.005			AWDT (0.(9502)
	b (gradient) = 0.685	B2		AWRT (0.68502)
	b (gradient) = 0.68 to 0.69	(B1)		AWFW
	a (intercept) = 0.344	B2		AWRT (0.34404)
	a (intercept) = 0.34 to 0.35 OR	(B1)		AWFW
				630 40344 435 & 27853
	Attempt at $\sum x \sum x^2 \sum y \& \sum xy$			(all 4 attempted)
	or Attempt at S_{xx} & S_{xy}	(M1)		654 & 448 (both attempted)
	Attempt at S_{xx} at S_{xy} Attempt at correct formula for <i>b</i>			(both attempted)
	(gradient)	(m1)		
	b (gradient) = 0.685 a (intercept) = 0.344	(A1) (A1)		AWRT AWRT
	a (intercept) – 0.344	(A1)		AWKI
	Accept $a \& b$ interchanged only if then identified correctly by a stated or used equation in (c) or (d)		4	
(c)	Figure 1:Correct line $(50, 34 \text{ to } 35)$ $(60, 40\frac{1}{2} \text{ to } 42)$ $(70, 47\frac{1}{4} \text{ to } 49)$ $(80, 54 \text{ to } 56)$	B2dep		Dep on \geq B1 B1 or A1 A0 in (b) At least from $x \approx 55$ to 70 Any two
	If B0 but evidence of use of line for ≥ 2 points within range 50 $\le x \le 80$	(M1)	2	Calc ⁿ or points shown on graph
(d)(i)	Residual = $y - (a + bx)$ [or $(a + bx) - y$]	M1		Used or implied; or equivalent
				(using graph); ≥ 1 residual correct
	H I J 2.5 to 4(.0) 2.5 to 4(.0) 2(.0) to 4(.0)	A2,1 (-1 EE)		(2.98) AWFW; ignore signs only (3.19) providing all the same (2.70)
	Mean = 2.3 to $4(.0)$	A1dep	4	AWFW; do not ignore sign (2.96) Dep on previous A2 scored
(ii)	$y_{65} = a + b \times 65$ or $y_{65} = 44$ to 45.5	M1		Use shown or AWFW (44.9)
	+ [(d)(i)] or [2.95 to 2.97]	m1		Use shown or AWFW; ignore sign o mean residual
	= 46 to 50	A1		AWFW (47.8)
	Special Cases : Line drawn/calc ^d on H, I & J or linear interp ⁿ using I & J = 47 to 49	(B2)		$y_{\rm M} = 4.51 + 0.666x \Rightarrow 47.8$ OR no evidence of method {from (d) and/or (d)(ii)} Evidence of incorrect method \Rightarrow B0
	44 to 45.5 seen with no evidence \Rightarrow B1		3	Evidence of incorrect method \Rightarrow Bo
		Total	15	

Q	Solution	Marks	Total	Comments	
7 (a)	Indication that 2.0537 is {a / the 98% (0.98)} z-value	B1			
	Standardising 45 using μ and σ : $z = \frac{45 - \mu}{\sigma}$ or $45 = \mu + z\sigma$	M1		Or equivalent	
	Fully correct derivation (including any necessary re-arrangement to given expression)	A1	3		
(b)	$0.95 (95\%) \implies z = 1.64$ to 1.65	B1		AWFW; ignore sign (1.644	1 9)
	Hence $30 - \mu = -1.6449\sigma$				
	Subtracting two equations	M1		Or equivalent	
	$15 = 3.6986\sigma$				
	Thus $\sigma = 4(.0)$ to 4.1	A1		AWFW (4.055	56)
	Thus $\mu = 36.6 \text{ to } 36.7$	A1	4	AWFW (36.671	10)
	Total		7		