

General Certificate of Education

Mathematics 6360 Statistics 6380

MS/SS1A/W Statistics 1A

Mark Scheme

2009 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method			
m or dM	mark is dependent on one or more M marks and is for method			
A	mark is dependent on M or m marks and is for accuracy			
В	mark is independent of M or m marks and is for method and accuracy			
Е	mark is for explanation			
$\sqrt{\text{or ft or F}}$	follow through from previous			
	incorrect result	MC	mis-copy	
CAO	correct answer only	MR	mis-read	
CSO	correct solution only	RA	required accuracy	
AWFW	anything which falls within	FW	further work	
AWRT	anything which rounds to	ISW	ignore subsequent work	
ACF	any correct form	FIW	from incorrect work	
AG	answer given	BOD	given benefit of doubt	
SC	special case	WR	work replaced by candidate	
OE	or equivalent	FB	formulae book	
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme	
−x EE	deduct x marks for each error	G	graph	
NMS	no method shown	c	candidate	
PI	possibly implied	sf	significant figure(s)	
SCA	substantially correct approach	dp	decimal place(s)	

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS/SS1A/W

MS/SS1A/W Q	Solution	Marks	Total	Comments
1(a)				In (a), ratios (eg 100:160) are only penalised by 1 mark at first correct answer
(i)	P(P) = 100/160 = 50/80 = 25/40 = 10/16 = $5/8 = 0.625$	B1		CAO
(ii)	$P(S') = 1 - \frac{32}{160}$ or $P(S) = \frac{32}{160}$	M1	1	Or equivalent Ignore labels of S' & S Can be implied by correct answer
	= 128/160 = 64/80 = 32/40 = 16/20 = 8/10			
(iii)	= 4/5 = 0.8 P(S or H) = P(S \cup H) =	A1	2	CAO
(III)	$\frac{60+32-18}{160} \text{ or } \frac{60+14}{160} \text{ or } \frac{32+8+16+18}{160}$	M1		Or equivalent Can be implied by correct answer
	= 74/160 = 37/80 = 0.462 to 0.463	A1	2	CAO/AWFW (0.4625)
(iv)	$P(T P) = \frac{30/160}{(i)}$	M1		Or equivalent Can be implied by correct answer but watch for $\frac{18}{60}$ or $\frac{48}{160}$
	= 30/100 = 3/10 = 0.3	A1	2	CAO
(b)	P(1C & 1R & 1S) =			
	$\frac{24}{160} \times \frac{56}{159} \times \frac{32}{158}$	M1		Multiplication of any 3 different given subject totals
	100 139 138	M1		Multiplication of 160, 159 & 158
	$(0.15 \times 0.35220 \times 0.20253)$ × 6	M1		Accept 3 dp accuracy Award for $3 \le \text{multiplier} \le 6$
	= 0.064 to 0.0644	A1		AWFW (0.0642) Do not accept a fraction as answer A correct answer can imply 4 marks
	Special Case: (Any given subject total) ÷ 160 seen anywhere in (b)	(M1)	4	Can award if no marks scored in (b) Accept a decimal equivalent
	Total		11	

MS/SS1A/W Q	Solution	Marks	Total	Comments
2(a)	r = 0.893 to 0.8933	В3		AWFW (0.89319)
	r = 0.89 to 0.896	(B2)		AWFW
	r = 0.8 to 0.95	(B1)		AWFW
	or			
	Attempt at $\sum x \sum x^2 \sum y \sum y^2 \& \sum xy$			561 30667 671 42613 & 35882 (all 5 attempted)
	or	(M1)		2056 1602 0 1661
	Attempt at S_{xx} S_{yy} & S_{xy}			2056 1682 & 1661 (all 3 attempted)
	Attempt at correct corresponding formula for r	(m1)		
	r = 0.893 to 0.8933	(A1)	3	AWFW
(b)	Fairly strong / strong / very strong positive (linear) correlation / relationship / association / link (but not 'trend')	B1dep		Or equivalent; must qualify strength and indicate positive Dependent on $0.8 \le r \le 0.95$ B0 for some/average/medium/etc
	between length and weight of adult snakes	B1	2	Context; providing $0 < r < 1$
(c)	Figure 1: 5 correct labelled points 4 or 3 correct labelled points	B2 (B1)	2	Deduct 1 mark if > 1 point not labelled
(d)(i)	D and G	B1		Both CAO
(ii)	r = 0.25 to 0.75	B1	1	AWFW (0.48790) No penalty for calculation Accept a range only if whole of it falls within 0.25 to 0.75
	Fairly weak / weak / some / moderate positive (linear) correlation / relationship / association / link Do not accept comparison with value in (a) or statement in (b)	B1dep	2	Or equivalent; must qualify strength and indicate positive Dependent on $0.25 \le r \le 0.75$ B0 for very weak/little/slight/ hardly any/fair/average/medium/ anything involving strong/etc
	Total		10	

MS/SS1A/W Q	Solution	Marks	Total	Comments
3(a)	$98\% (0.98) \implies z = 2.32 \text{ to } 2.33$	B1		AWFW (2.3263)
	CI for μ is $\overline{x} \pm z \times \frac{\sigma}{\sqrt{n}}$	M1		Used Must have \sqrt{n} with $n > 1$
	Thus $1030 \pm 2.3263 \times \frac{50}{\sqrt{20}}$	A1F		F on z only
	Hence 1030 ± 26 or			CAO & AWRT
	(1004, 1056)	A1	4	AWRT
(b)	Whole of confidence interval is above 1000 so	B1F		F on (a) Or equivalent
	Agree with claim	B1F dep	2	F on (a) Or equivalent Dependent on previous B1F
		Total	6	
4(a)	Mean = $\frac{\sum fx}{\sum f} = \frac{275}{99} = 2.77$ to 2.78	B1		AWFW (2.778)
	If not identified, assume order is \bar{x} then s SD $(\sum fx^2 = 933) = 1.3(0)$ to 1.32	B2		Treat rounding to integers as ISW AWFW (1.307 & 1.314)
	Special Case: Evidence of $\frac{\sum fx}{99}$	(M1)	3	Can award if no marks scored in (ii)
(b\)(i)	Mean ₁₆₃ = $\frac{99 \times \text{Mean}_{99}}{163}$ or $\frac{\sum fx \text{ from(a)(ii)}}{163}$	M1		Or equivalent; may be implied by an answer within range
	= 1.68 to 1.69	A 1	2	AWFW (1.687)
(ii)	Increase	B1	1	CAO; or equivalent (1.696) Ignore any working (1.702)
(iii)	Data is (positively/negatively) skewed / not symmetric / bimodal / not bell-shaped from frequency distribution / given table	D.1		
	or [C's mean in (b)(i)] $-2 \times$ [C's SD in (a)(ii)] <	B1		Or equivalent
	or [C's mean in (b)(i)] $-2 \times [1.69 \text{ to } 1.71] < 0$			(-1.75 to -0.90)
	Thus claim appears not valid	B1 dep	2	Or equivalent Dependent upon previous B1
	Total		8	

MS/SS1A/W Q	Solution	Marks	Total	Comments
5(a)	$W \sim N(3.12, 0.08^2)$			
	$P(2.95 < X < 3.20) = P\left(\frac{2.95 - 3.12}{0.08} < Z < \frac{3.20 - 3.12}{0.08}\right)$	M1		Standardising (2.945, 2.95 or 2.955) or (3.195, 3.20 or 3.205) with 3.12 and $(\sqrt{0.08}, 0.08 \text{ or } 0.08^2)$ and/or $(3.12 - x)$
	= P(-2.125 < Z < 1)	A1		Either; CAO 1 AWFW -2.13 to -2.12
	= P(Z<1) - [1 - P(Z<2.125)]	m1		Area change; may be implied
	= 0.84134 - [1 - (0.98300 to 0.98341)]			
	= 0.824 to 0.825	A 1	4	AWFW (0.82455) $(1 - answer) \Rightarrow M1 A1 max$
(b)	$2.5\% (0.975) \Rightarrow z = -1.96$	B1		AWRT; ignore sign (-1.9600)
	$z = \frac{3 - 3.12}{\sigma}$	M1		Standardising 3 with 3.12 and σ ; allow (3.12 – 3)
	= -1.96	A1		Only allow: ±1.96 ±1.64 to ±1.65
	$\sigma = 0.06 \text{ to } 0.0613$	A 1		AWFW (0.06122)
	$\frac{3-3.12}{\sigma} = 1.96 \implies \sigma = 0.06122$ $\implies B1 M1 A1 A0$		4	Or equivalent inconsistent signs
(c)	$W \sim N(3.12, 0.00375)$			
	Variance of $\overline{W}_5 = 0.00375/5 = 0.00075$			CAO
	SD of $\overline{W}_{5} = \sqrt{0.00375} / \sqrt{5}$	B1		Stated or used
	= 0.0273 to 0.0275			AWFW
	$P(\overline{W}_5 < 3.15) = P\left(Z < \frac{3.15 - 3.12}{\sqrt{0.00375/5}}\right)$	M1		Standardising 3.15 with 3.12 and $\sqrt{0.00075}$ or equivalent; allow $(3.12 - 3.15)$
	= $P(Z < 1.09 \text{ to } 1.1) = 0.862 \text{ to } 0.865$	A1	3	AWFW (0.86334) (1 - answer) \Rightarrow B1 M1 max
		Total	11	

MS/SS1A/W Q	Solution	Marks	Total	Comments
6(a)	$R \sim B(50, 0.15)$			
(i)	P(R < 10) = 0.791	B1		AWRT (0.7911)
(ii)	$P(5 \le R \le 10) = 0.8801 \text{ or } 0.7911$ (p_1)	M1		Accept 3 dp accuracy $(1 - p_2) - p_1 \Rightarrow M0 M0 A0$ $p_1 - (1 - p_2) \Rightarrow M1 M0 A0$ only providing result > 0
	minus 0.1121 or 0.2194 (p_2)	M1		Accept 3 dp accuracy
	= 0.768	A1		AWRT (0.7680)
	or B(50, 0.15) expressions stated for at least 3	M1		Can be implied by correct answer
	terms within $4 \le R \le 10$ gives probability = 0.768	A2	4	AWRT
(b)	Confusion of 22, 35, 120 and/or 0.15, 0.06			Do not treat as misreads
(i)	$S \sim B(22, 0.06)$	M1		Used in (b)(i) as evidenced by any correct binomial term for $S > 0$
	$P(S = 2) = {22 \choose 2} (0.06)^2 (0.94)^{20}$	A1		Can be implied by correct answer Ignore any additional terms
	= 0.24 to 0.242	A1	3	AWFW (0.24125)
(ii)	$P(S \ge 1) = 1 - q^{35}$ where $0.84 \le q \le 0.96$	M1 (B1)		Can be implied by correct answer Award for $(0.94)^{35}$ seen in an expression but not if accompanied by a multiplier $\neq 1$
	= 0.885 to 0.89	A1	2	AWFW (0.88532)
(iii)	Mean = $np = 120 \times 0.94 = 112.8$ or 113 If not identified, assume order is μ then σ^2	B1		Either
	Variance = $np(1-p)$ = $120 \times 0.94 \times 0.06 = 6.76$ to 6.78	B1	2	Must clearly state variance value AWFW (6.768)
(iv)	Means are (approximately) the same stated or	B1		Must have scored 1 st B1 in (iii)
	Variances are (very) different stated	Di		Must have scored 2 nd B1 in (iii)
	Agree with P(sorts letter incorrectly) = 0.06	B1 dep		Dependent on 'means same' stated
	Disagree with independent from letter to letter	B1 dep	3	Dependent on 'variances different' stated
	Total		14	
	TOTAL		60	