

General Certificate of Education (A-level)
June 2011

Mathematics

MS/SS1A

(Specification 6360)

Statistics 1A

Final

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334).

Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
−x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS/SS1A/W

V15/551A Q	Solution	Marks	Total	Comments
1 (a)(i)	Mode = 253	В1	1	CAO
(ii)	Median = 252	B1		CAO
	Upper quartile = 253 Lower quartile = 250	B1		CAO; either May be implied by IQR = 3
	Interquartile range = 3	B1	3	CAO; do not award if seen to be not based on 253 and 250
(b)	Mean, $\overline{x} = 251$ to 251.4 Award B1 if divisor seen not to be 85 but answer in range	B2		AWFW $\sum fx = 21352$ $\bar{x} = 251.2$
	Note: If B0 then can award M1 for attempt at $\sum fx \div 85$ seen			Ignore notation and condone incorrect midpoints (eg upper or lower limits used)
	Standard deviation, s or $\sigma = 4.21$ to 4.28 Award B1 if divisor seen not to be 84 or 85 but answer in range	B2	4	AWFW $\sum fx^2 = 5365134$ $\sigma = 4.217$ $s = 4.242$
(c)	Interquartile range (IQR)	B1		Named
	Not affected by unknown/large/small/extreme/ outlying/227 & 271 values	Bdep1	2	Or equivalent Dependent on previous B1 Only negative comments on other measures ⇒ Bdep0
	OR			More than one named \Rightarrow B0 Bdep0 Range \Rightarrow B0 Bdep0
	Standard deviation (s or σ)	(B1)		Named
	Uses all data values	(Bdep1)		Or equivalent Dependent on previous (B1) Only negative comments on other measures ⇒ Bdep0
	Total		10	

Q	Solution	Marks	Total	Comments
2 (a)	Weight, $W \sim N(165, 2.5^2)$			
(i)	$P(W < 167) = P\left(Z < \frac{167 - 165}{2.5}\right)$	M1		Standardising 167 with 165 and 2.5; allow (165 – 167)
	= P(Z < 0.8)	A1		CAO; ignore inequality and sign May be implied by a correct answer
	= 0.788	A1	3	AWRT (0.78814)
(ii)	P(W > 162) = P(Z > -1.2)			
	= P(Z < 1.2)	M1		Area change; may be implied by correct answer or answer > 0.5
	= 0.884 to 0.886	A1	2	AWFW (0.88493)
(b)	P(12 pucks < 167) = p^{12} with 0	M1		Any probability to power 12 or $1 - p^{12}$; do not allow multiplying factors
	= $[(a)(i)]^{12}$ = $(0.78814)^{12}$ = 0.057 to 0.058	A1	2	AWFW (0.05744)
(c)	$1\% \Rightarrow 99.5\% (0.995) \Rightarrow z = 2.57 \text{ to } 2.58$	B1		AWFW (2.5758)
	$z = \frac{170 - 165}{\sigma} \text{or} \frac{160 - 165}{\sigma}$	M1		Standardising 170 or 160 with 165 and σ ; allow $(165 - x)$
	= 2.5758 or -2.5758	A1		Only allow: ± 2.05 to ± 2.06 ± 2.32 to ± 2.33 ± 2.57 to ± 2.58
	$\sigma = 1.94$ Note: Inconsistent signs \Rightarrow B1 M1 A1 max	A1	4	AWRT (1.94114)
	Total		11	

Q Q	Solution	Marks	Total	Comments
3(a) (i)	$96\% (0.96) \Rightarrow z = 2.05 \text{ to } 2.06$	B1		AWFW (2.0537)
	CI for μ is $\overline{x} \pm z \times \frac{s}{\sqrt{n}}$	M1		Used with 251.1 and 1.94 correctly Must have \sqrt{n} with $n > 1$
	Thus $251.1 \pm 2.0537 \times \frac{1.94}{\sqrt{50 \text{ or } 49}}$	AF1		F on z only
	Hence 251.1 ± 0.6 or (250.5, 251.7)	Adep1	4	CAO/AWRT Dependent on AF1 but not on z so can be gained using an incorrect z AWRT
(ii)	Claim is $\mu > 250$			
	Clear correct comparison of 250 with LCL or CI so	BF1		F on CI (250 < LCL or CI)
	Claim is supported/reasonable/correct/true/etc Must be consistent with c's comparison	Bdep1	2	Dependent on BF1
(b)				
(i)	I for x is $\bar{x} \pm z \times s$ = 251.1 \pm 2.0537 \times 1.94	M1		Must have $n = 1$ and correct or same z as in (a)(i)
	Hence $251.1 \pm 4(.0)$			CAO/AWRT
	or	AF1	2	F on z in (a)(i); can be gained using an incorrect z
	(247, 255)			AWRT
(ii)	Some individual packets are likely to/will contain less than 250 grams	BF1	1	Or equivalent F on (b)(i)
	Total		9	

Q	Solution	Marks	Total	Comments
Q 4 (a)	SolutionJ J' TotalW0.550.100.65W'0.150.200.35Total0.700.301.00 Notes: Use of Venn or tree diagrams without table completion \Rightarrow B0 B0 B0 Printed table not completed but constructed and completed on Page 12/13 \Rightarrow B1 B1 B1 max	B1 B1 B1	Total 3	Comments 0.35 and 0.7; CAO 0.55; CAO 0.1 and 0.2; CAO Accept fractional answers Do not accept percentages
(b)	P(purchases exactly one) = $P(W \cap J') + 0.15$ = $0.10 + 0.15$ = 0.25 or $25/100$ or $5/20$ or $1/4$	M1 A1	2	Only c's equivalent to 0.10 shown and added to 0.15 Can be implied by correct answer CAO
(c) (i)	$P(W \cup J) = 0.8$ &/ \neq $P(W) + P(J) = 1.35$ or $P(W \cap J) = 0.55$ (>0); accept if indicated in a Venn diagram or $P(W) + P(J) = 1.35$ >0 or impossible	B1		Any one of these three seen Ignore contradictions, explanations & justifications Do not accept use of W' and/or J'
(ii)	$P(W J) = 0.55/0.70 = 0.79$ &/\neq P(W) = 0.65 or $P(J W) = 0.55/0.65 = 0.85$ &/\neq P(J) = 0.70 or $P(W) \times P(J) = 0.45 \text{ to } 0.46$ &/\neq P(W \cap J) = 0.55	B1 Bdep1	3	AWRT Any one of these three seen Ignore contradictions, explanations & justifications AWFW
	Total		8	

MS/SS1A/ Q	Solution	Marks	Total	Comments
5(a)	$X \sim B(10, 0.15)$	D1	1	AWDT (0.9202)
(i)	$P(X \le 2) = 0.82(0)$	B1	1	AWRT (0.8202)
(ii)	$P(X \ge 2) = 1 - P(X \le 1)$ = 1 - (0.5443 or 0.8202)	M1		Requires '1 -' Accept 3/2 dp rounding or truncation Can be implied by 0.455 to 0.456 but not by 0.179 to 0.18(0)
	= 0.455 to 0.456	A1	2	AWFW (0.4557)
(iii)	$P(1 < X < 5) = 0.9901 \text{ or } 0.9986$ (p_1)	M1		Accept 3 dp rounding or truncation $p_2 - p_1 \implies M0 \text{ M0 A0}$ $(1 - p_2) - p_1 \implies M0 \text{ M0 A0}$ $p_1 - (1 - p_2) \implies M1 \text{ M0 A0}$ only providing result > 0
	minus 0.5443 or 0.1969 (p_2)	M1		Accept 3 dp rounding or truncation
	= 0.445 to 0.446	A1	3	AWFW (0.8541)
	OR B(10, 0.15) expressions stated for at least 3	(M1)		Can be implied by a correct answer
	terms within $1 \le X \le 5$ gives probability = 0.445 to 0.446	(A2)		AWFW (0.8541)
a.)		(112)		(0.00 11)
(b) (i)	$P(Y > 5) = 1 - P(Y \le 5)$			
	= 1 - (0.2194 or 0.1121)	M1		Requires '1 -' Accept 3 dp rounding or truncation Can be implied by 0.78(0) to 0.781
	= 0.78(0) to 0.781	A1	2	but not by 0.888 to 0.89 AWFW (0.7806)
(ii)	$P(5 \le Y \le 10) = 0.8801 \text{ or } 0.7911$ (p_1)	M1		Accept 2/3 dp rounding or truncation $p_2 - p_1 \implies M0 \text{ M0 A0}$ $(1 - p_2) - p_1 \implies M0 \text{ M0 A0}$ $p_1 - (1 - p_2) \implies M1 \text{ M0 A0}$
	minus 0.1121 or 0.2194 (p_2)	M1		only providing result > 0 Accept 3 dp rounding or truncation
	= 0.768	A1	3	AWRT (0.7680)
	OR B(50, 0.15) expressions stated for at least 3	(M1)		Can be implied by a correct answer
	terms within $4 \le Y \le 10$ gives probability			
	= 0.768	(A2)		AWRT (0.7680)
(c)	Mean, $\mu = 50 \times 10 \times 0.15 = 75$	B1		CAO SC: 7.5 & 6.37 to 6.38 ⇒ B1
	Variance, $\sigma^2 = 50 \times 10 \times 0.15 \times 0.85$ = 63.7 to 63.8	B1	2	AWFW (63.75)
		i		1

MS/SS1A Q	Solution	Marks	Total	Comments
6	Solution	IVILLI KS	10001	Comments
(a)	Ryan: Value indicates that as volume increases then weight decreases	B1		Or equivalent in context
	Sunil: Value indicates no correlation/relationship/ association/link between volume and weight	B1	2	Or equivalent in context
	SC: If B0 B0: Would expect weight to increase with volume or Would expect strong(er) positive correlation between weight and volume	(B1)		Or equivalent in context
(b)	Ryan & Sunil: r is not affected by units/(linear) scaling	B1		Or equivalent
	Tim: r is not affected by sample size or $2 \times 0.612 > 1 \implies$ impossibility	B1	2	Either; or equivalent
(c) (i)	r = 0.541 to 0.543 r = 0.54 to 0.55 r = 0.5 to 0.6	B3 (B2) (B1)	3	AWFW AWFW AWFW
	OR			
	Attempt at $\sum v \sum v^2 \sum w \sum w^2$ & $\sum vw$ or Attempt at $S_{vv} S_{ww}$ & S_{vw}	(M1)		216 6633.16 136 2376.84 & 3795.5 (all 5 attempted) Accept notation of <i>x</i> and <i>y</i> 801.16 64.84 & 123.5 (all 3 attempted)
	Attempt at substitution into correct	(m1)		
	corresponding formula for r $r = 0.541 \text{ to } 0.543$	(A1)		AWFW
(ii)	(Quite or fairly) weak/some/moderate positive (linear) correlation/relationship/ association/link (but not 'trend')	Bdep1		Dependent on $0.5 \le r \le 0.6$ Or equivalent; must qualify strength and state positive Bdep0 for very strong/strong/high/good/average/medium/reasonable/poor/very weak/little/etc
	volumes and weights of suitcases	B1	2	Context; providing $0 < r < 1$
	Total		9	
	TOTAL		60	