

General Certificate of Education

Statistics 6380

SS05 Statistics unit 5

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
A	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
Е	mark is for explanation				
√or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
−x EE	deduct x marks for each error	G	graph		
NMS	no method shown	c	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

June 07

SS05

Q	Solution	Marks	Total	Comments
1(a)(i)	$P(0.8 \le X \le 1.2) = \frac{1.2 - 0.8}{2 - 0}$ $= \frac{0.4}{2} = 0.2$	M1		
	$=\frac{0.4}{2}=0.2$	A1	2	
(a)(ii)	P(X=1)=0	В1	1	
(b)(i)	$P(X \ge 0.6) = \frac{2 - 0.6}{2} = \frac{1.4}{2} = 0.7$	B1		
	P(all three ≥ 0.6) = $(0.7)^3$ = 0.343	M1 A1	3	probability raised to power of 3 CAO
(ii)	P(remnant less than 1 metre long) $= \frac{1 - 0.6}{2 - 0.6} = \frac{0.4}{1.4}$ = 0.286 (3 sf)	M1 A1	2	
	$P(X < 1 X \ge 0.6)$ $= \frac{P(0.6 \le X < 1)}{P(X \ge 0.6)} = \frac{0.2}{0.7}$ $= 0.286$	(M1) (A1)	(2)	
	Total	(A1)	8	

Q	Solution	Marks	Total	Comments
2(a)(i)	$v = 9$ $t = \pm 2.262$	B1 B1		here or in (ii) $S^{2} \times \frac{10}{9} : \text{ withhold last A mark in 1 part}$
	95% confidence limits for mean are: $446.9 \pm 2.262 \times \frac{13.9}{\sqrt{10}}$ 95% confidence interval is: (437, 457) grams	M1 m1	5	use of formula standard error (436.9 to 437, 456.8 to 457)
(ii)	$\chi^2 = 2.700$, 19.023 95% confidence limits for variance are: $\frac{9 \times 13.9^2}{19.023}$, $\frac{9 \times 13.9^2}{2.700}$	B1 M1 A1√		both correct values substituted
	(95% CI is (91.410, 644.03)) 95% CI for standard deviation is: $\left(\sqrt{\frac{9\times13.9^2}{19.023}}, \sqrt{\frac{9\times13.9^2}{2.700}}\right)$	M1		ft on incorrect x^2 values
	= (9.56, 25.4) grams	A1	5	(9.5 to 9.6, 25.3 to 25.4) CAO
(b)	Damien's claim seems to be correct upper CL for mean is less than 460	B1 E1	2	must say above CI
(c)	taking lower CL for mean (437) and upper CL for SD (25.4) 350 is more than 3 SDs below mean making it plausible that Damien made a mistake	E1 E1 E1	3	SC E1 for plausible because 350 well below CI for mean
	Total		15	

Q	Solution	Marks	Total	Comments
3(a)	Morning: $s_x^2 = 12.136$ or $s_x = 3.48$ Evening: $s_y^2 = 35.045$ or $s_y = 5.92$ H ₀ : $\sigma_x^2 = \sigma_y^2$ H ₁ : $\sigma_x^2 < \sigma_y^2$ Ratio of variances $= \frac{35.045}{12.136}$	B1 B1 B1 B1 M1	2000	12.1 to 12.2; AWRT 35.0 to 35.1; AWRT or equivalent
	= 2.89 (or 0.346) $v_1 = 9$; $v_2 = 7$ Critical value of $F = 3.677$ (or $\frac{1}{3.677} = 0.272$)	A1√ B1 B1		2.86 to 2.89 (0.344 to 0.349) ft on sample variances both, either way round accept 0.368 (0.271 to 0.272) if used H ₁ with \neq must have $F = 4.823$
	2.89 < 3.677 (or 0.346 > 0.272) There is not sufficient evidence at the 5% level to support Sandeep's belief	A1√	9	ft on variance ratio and CV
(b)	H ₀ : $\mu_M - \mu_A = 1$ H ₁ : $\mu_M - \mu_A > 1$ CV of $z = 1.6449$	B1 B1 B1		μ_M , μ_A reversed, lose first B1 and last A1 or equivalent If H ₁ \neq must have 1.96 accept 1.64, 1.645 or $P(Z>1.94) = 0.2619$
	sample value of $z = \frac{(61.7-58.9)-1}{2.1\sqrt{\frac{1}{9}+\frac{1}{12}}}$ = 1.94 1.94 > 1.6449 so reject H ₀ . There is sufficient evidence at the 5% level to support the trainer's claim	M1 m1 A1 A1√	7	difference of means over sd correct form of sd CAO; AWRT ft on sample value and CV
	Total		16	

Q	Solution	Marks	Total	Comments
4(-)(*)	D(V 22) 1 s ^{-0.4×2}	N/1		
4(a)(1)	$P(X < 2) = 1 - e^{-0.4 \times 2}$	M1		or by integration
	$=1-e^{-0.8}=0.551$	A1	2	AWRT
(::)	$P(2 \le X \le 5) = F(5) - F(2)$			
(ii)		3.54		
	$= (1 - e^{-2}) - (1 - e^{-0.8})$	M1		or by integration
	= 0.314	A1	2	AWRT
(b)	for median m , $F(m) = 0.5 (= 1 - F(m))$	B1		may be implied
	F(1.7) = $1 - e^{-0.68} = 0.493$	B1		may be implied
		Di		
	$\left(e^{-0.68}=0.507\right)$			
	$F(1.8) = 1 - e^{-0.72} = 0.513$	B1		
	$(e^{-0.72}=0.487)$			
	0.5 lies between 0.493 and 0.513 so	E1	4	
	median lies between 1.7 and 1.8			
	or			
	$e^{-0.4m} = 0.5$	(M1)		equation of correct form
	$-0.4m = \ln(0.5)$	(m1)		attempt to solve using logs
	` ′	, ,		
	$m = \frac{0.693}{0.4} = 1.73$	(A1)		
	so median lies between 1.7 and 1.8	(E1)		solution used to answer question
	m . 1		0	
	Total		8	

O Cont	Solution	Marks	Total	Comments
<u> </u>	Solution	IVIALKS	1 Utai	Comments
5(a)	$P(X < 304) = \Phi\left(\frac{304 - 310}{4}\right)$	M1		attempt to find a probability
	$a = \Phi(-1.5) = 0.0668$ (or 0.0667)	A1		one missing value found
	b = 0.0918 (or 0.0919)	B1		second value found by any method
	c = 0.0918 (or 0.0919)			J J
	$d = 0.0668 (or \ 0.0667)$	B1	4	remaining values correct
(b)				
	$ \begin{array}{c cccc} O & E & \frac{(O-E)^2}{E} \\ \hline 5 & 6.68 & 0.42 \\ 12 & 0.10 & 1.58 \\ \end{array} $			If $E = 12.5$ throughout, just second M1 available
	13 9.19 1.58 10 14.99 1.66	M1		probabilities ×100
	18 19.15 0.07	M1		use of formula
	25 19.15 1.79	A1		at least 4 values correct (AWRT)
	20 14.99 1.68			
	5 9.19 1.91 4 6.68 1.08			$\sum E \neq 100$: lose this and final A1
	10.2	A1		total correct; AWRT
	10.2			total collect, /1 wiki
	H_0 : can be modelled by N(310, 4^2)			
	H ₁ : Not H ₀	B1		both
	v = 8 - 1 = 7	B1		
	$\chi^2_{10\%} = 12.017$	B1		any grouping of categories: lose final A1
	10.2 < 12.017			
	Accept H ₀ at 10% level. There is not	A1√	8	ft on calculated value and cv
	sufficient evidence to reject the model			
(c)	(1) Reasonable claim as model has	E1		
	mean 310. (Does not say much about			
	one punnet)	E1		mafaman as to malayout Green Green
	(2) Looks a safe claim. Only 5 punnets in sample < 304g; shape of normal	E1		reference to relevant figure from sample in (2) or (3)
	distribution suggests few, if any, will			Sumple III (2) Of (3)
	be < 300g	E1		reference to property of normal in (2)
	(3) At least 5 punnets in sample < 305g			or (3)
	and shape suggests claim could be wrong for about 10% of punnets	E1	4	appropriate assessment of possibilities
	wrong for about 10% of pullifiers	El	4	appropriate assessment of possibilities must use data and model for E4
	Total		16	made and and model for D !
<u> </u>	1000		- •	1

Q	Solution	Marks	Total	Comments
6		B1 B1		any two attempt to use t-test for difference of
	$H_0: \ \mu_A = \mu_B$ $H_1: \ \mu_A \neq \mu_B$	B1		both
	pooled estimate of variance $= \frac{(10\times3.24^2) + (8\times2.71^2)}{10+8}$	M1		
	$= 9.096 v = 18 t = \pm 2.878$	A1 B1 B1		accept 9.09 to 9.10
	sample statistic = $\frac{41.6 - 38.4}{\sqrt{9.096 \left(\frac{1}{11} + \frac{1}{9}\right)}}$	M1 A1		correct values substituted
	= 2.36	A1√		ft on standard error; AWRT
	2.36 < 2.878 so accept H ₀			
	There is not enough evidence at the 1% level to say that the earlier assessment was wrong	A1√	12	ft on sample statistic and <i>t</i> depends on first and last M1
	Total		12	
	TOTAL		75	