Version 1.0

General Certificate of Education (A-level) June 2011

Statistics

SS05

(Specification 6380)

Statistics 5

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

mark is for method
mark is dependent on one or more M marks and is for method
mark is dependent on M or m marks and is for accuracy
mark is independent of M or m marks and is for method and accuracy
mark is for explanation
follow through from previous incorrect result
correct answer only
correct solution only
anything which falls within
anything which rounds to
any correct form
answer given
special case
or equivalent
2 or 1 (or 0) accuracy marks
deduct <i>x</i> marks for each error
no method shown
possibly implied
substantially correct approach
candidate
significant figure(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

SS05 – June 2011				
Q	Solution	Marks	Total	Comments
1	s = 19.832	B1		19.8 (19.8 ~ 19.9) or 393 or 4326 (3SF)
	$H_0: \sigma = 25$ $H_1: \sigma \neq 25$	B1		hypotheses
	$\sum \frac{(x-\overline{x})^2}{\sigma^2} = \frac{11 \times 19.832^2}{25^2} = \frac{4326.25}{625} = 6.92$	M1		$6.92(6.91 \sim 6.93)$
	- 0.92	AI		0.92 (0.91 0.93)
	c.v. χ_{11}^2 3.816 and 21.920	B1 B1		11 df 3.816
	accept H_0 no significant evidence to doubt that the weights of the pieces of fudge are distributed with a standard deviation of 25 g	A1		conclusion – allow comparison with lower tail in context – disallow contradiction
	c.i. $14.05 \sim 33.67$ Using F ts 1.589 c.v. 0.5017 and 2.883 ts 0.629 c.v. 0.3469 and 1.993 p = 0.390			
	Total		7	
L	Totui		l '	

SS05	(cont)			
Q	Solution	Marks	Total	Comments
2(a)(i)	Time intervalOE8 am - 11 am1911.6711 am - 1 pm37.781pm - 3 pm67.783 pm - 5 pm77.78	M1 A1		method for E values all E values correct (1dp)
	H_0 : rectangular distribution is an adequate model H_1 : rectangular distribution is not an adequate model	B1		hypotheses – may be earned in conclusion $(z = z)^2$
	$\sum \frac{\left(O-E\right)^2}{E} = \frac{7.33^2}{11.67} + \frac{4.78^2}{7.78} + \frac{1.78^2}{7.78} + \frac{0.78^2}{7.78}$	M1		attempt at $\sum \frac{(O-E)^2}{E}$ using their E values
	= 8.03	A1		(8~8.05)
	$x^{2} = 6251$	B1		3 df (7.815, 9.348, 11.345, 12.838)
	$c.v. \chi_3$ is 0.251	B1F		6.251 – their df (4.605, 7.779)
	distribution does not adequately model the distribution of daily times of false fire	AIF		their E values and comparison with upper tail
	alarms	A1F	9	in context – needs previous A mark
(ii)	if John's belief was correct a rectangular distribution would provide an adequate model there is significant evidence to reject the	E1		rectangular distribution would support John's belief
	rectangular distribution and hence to reject John's belief	E1F	2	belief not supported
(b)(i)	number of alarms between 3pm and 5pm	E1		comparison of O and E between 3pm and
	slightly less than expected – hence no evidence to support Folake's belief (number between 4pm and 5pm unknown)	E1	2	5pm no support for Folake's belief
(ii)	inappropriate since E for a single hour would be 3.89, ie <5 and so test would be invalid	E1 E1	2	because E<5 test invalid
(c)	there are many more false alarms than expected during the first 3 working hours	E1	1	more than expected during first 3 hours; ignore additional comments
	Total		16	

SS05	(cont)
-------------	--------

Q	Solution	Marks	Total	Comments
3(a)(i)	s = 20.542	B1		20.542 (20.5 ~ 20.6)
				or 422.0 (421.5 ~ 422.5)
				or 4219.6 (4215 ~ 4225)
	95% confidence interval for standard			
	deviation given by			and a second and a second and a second
	$3.247 < \frac{10 \times 20.542^2}{2} < 20.483$	M1		any correct expression – condone one small slip: condone incorrect α^2
	σ^{2}			sman snp, condone incorrect χ
	$\frac{4219.04}{20.483} < \sigma^2 < \frac{4219.04}{3.24}$	m1		correct expression – condone incorrect χ^2
	$206.01 < \sigma^2 < 1299.55$	B1		10 df
				3.247 (3.24 ~ 3.25) and
		B1F		20.483 (20.4 ~ 20.5)
		m1		correct method for interval for σ (or σ^2)
				provided it is clearly called σ^2 or variance
	$14.4 < \sigma < 36.0$	A1	7	14.4 $(14.3 \sim 14.4)$ and 36.0 $(36.0 \sim 36.1)$
(ii)	$\overline{x} = 61.1818$			
	95% confidence interval for mean			s
	$61.1818 \pm 2.228 \times 20.542$	M1		use of their $\frac{3}{\sqrt{11}}$
	$\sqrt{11}$	m1		method for interval; allow incorrect <i>t</i> -value
		B1		2.228 or 2.23
	61.18 ± 13.8			47.4 (47.35 \approx 47.45) and
	47.4 ~ 75.0	A1	4	75.0 (74.95 ~ 75.05)
(b)	9.3 + 10% = 10.23	B1		10.23 (10.2 ~ 10.3) or 54.7
	confidence interval for the standard	E1		below confidence interval for sd
	deviation			
	hence there is significant evidence that	E1		ad increased by more than 10%
	Blandlager by more than 10%	EI		su increased by more than 10%
	although the sample mean of 61.2			
	suggests that the mean may be more than	E 1		interval for mean contains 40.7/54.7
	confidence interval for the mean contains	EI		Interval for mean contains 49.1/34.7
	49.7			no significant evidence that the mean has
	so this provides no significant evidence	E 1	5	increased by 10%
	Blandlager		3	Crudgiesale
	0			(If no reference to c.i. in (a), maximum 2
				marks)
				(Maximum 5 marks for this part)
	Total		16	

Q	Solution	Marks	Total	Comments
4(a)	mean $\frac{1}{0.22} = 4.55$	M1		for both
(b)	sd $\frac{1}{0.22} = 4.55$	Al B1	2	4.55 (4.54 ~ 4.55) for both
(U)		M1		0.22×3
	= e		2	
(c)	$= 0.335$ $1 - e^{-0.22 \times 3}$ $= 1 - e^{-0.66}$ $= 1 - 0.5168$ $= 0.483$	M1 m1 A1	3	attempt to find > or < 3 from exponential parameter 0.22 allow wrong tail 0.483 (0.483 ~ 0.484)
(d)	$z = \frac{(3 - 4.545455)}{\left(\frac{4.545455}{\sqrt{40}}\right)}$ = -2.15	M1 m1 m1		Use of $\frac{\text{their sd}}{\sqrt{40}}$ z – their mean and sd from (a) – ignore sign needs M1 from part (a) – allow wrong tail
	Probability mean time exceeds 3 minutes is 0.984	A1	4	0.984 (0.98 ~ 0.99)
	Total		12	

SS05 (cont	t)			
Q Sol	ution	Marks	Total	Comments
$5(a)(i) \overline{x}_{AB}$	$s_{ac} = 205.125$ $s_{ABC} = 15.6245$	B1		205.125 and 15.6245 or 244.125
\overline{x}_{XY}	$s_{XYZ} = 192.429$ $s_{XYZ} = 17.7844$	B1		192.429 and 17.784 or 316.29
				all correct to 3SF – must be shown but
				may be earned in (a)(ii)
H ₀	$:\sigma_{ABC} = \sigma_{XYZ}$	B1		hypotheses
H_1	$:\sigma_{ABC} \neq \sigma_{XYZ}$	21		
F=	$=\frac{316.29}{1000}=1.30$	M1		for F
	244.125	A1		1.30 (1.29 ~ 1.30)
c.v.	$F_{[6,7]}$ is 5.119	B1 D1		6, 7 df
(or	compare 0.772 with 0.195)	BI		5.119 (5.11 ~ 5.12)
acc	ept H_0 standard deviations of the times			
are	the same for each courier	A1F	8	conclusion in context
<i>P</i> =	= 0.7354 (0.735 ~ 0.736)			
(ii)	alad variance estimate			
(II) poc	$(244, 125 \times 7 \pm 316, 271 \times 6)$			
s_p^2	$=\frac{(244.125 \times 7 + 510.271 \times 0)}{12}$	M1		method for pooled variance
= 2	77.423			
H	$:\mu_{ABC}=\mu_{XYZ}+10$	B1		one hypothesis correct
	$: \mu_{ABC} > \mu_{YYZ} + 10$	B1		both hypotheses correct – don't penalise
1				the same error twice
	(205.125 - 192.429 - 10)	M1		method for numerator
t =	(1,1)	M1		method for denominator
	$\sqrt{277.423}\left(\frac{1}{8}+\frac{1}{7}\right)$			allow $\frac{\mathbf{s}_{A}}{\mathbf{s}} + \frac{\mathbf{s}_{B}}{7}$
= 0	.313	A1		$0.313 (0.31 \sim 0.32)$; ignore sign
c.v.	<i>t</i> ₁₃ is 1.35	B1		1.35; ignore sign
acc	ept H_0 no significant evidence to	A1F		accept H_0 – must be compared with
sho	we that XYZ couriers are more than 10 putes faster than ABC couriers	A1E	0	correct tail of t – disallow contradiction conclusion in context – needs previous
P =	$= 0.3797 (0.379 \sim 0.4)$	7111)	A mark
(b)(i) star	ndard deviation unchanged – not	E1		no change
+ afte	ected by adding a constant	EI		sd unchanged by adding a constant
(II) III (that	t the mean time had been reduced by			
mo	re than 10 minutes hence the firm will			
con	tinue to use ABC couriers	E1		from (a)(ii) firm will continue with ABC –
the	additional information reduces the	E 1		may be earned in (a)(ii)
mir	putes to 2.7 minutes and so offers	EI		
no	reason to change the decision	E1	5	no change to decision
	~			
(c) AB	C couriers - these times might be			
	d works etc	E1		Reason for ABC couriers
XY	Z couriers – these are times of a firm			
hop	bing for a contract so may not be			
rep	resentative of times if contract is	F 1	2	Dessen for VVZ sources
WO	n/new firm unfamiliar with route	EI	<u> </u>	Keason for AYZ couriers
	TOTAL		75	