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AS-Unit-1-Physics-on-the-go 

1 Mechanics 

Chapter 1 Scalars and Vectors 

1.1 Definition of scalars and vectors 

Scalar: quantity has direction only. 

Examples of scalar: mass, temperatures, volume, work… 

Vector: quantity both has magnitude and direction  

Examples of vectors: force, acceleration, displacement, velocity, 

momentum… 

Representation of vectors: any vectors can be represented by a straight line 

with an arrow whose length represents the magnitude of the vectors, and the 

direction of the arrow gives the direction of the vectors. 

Vector Notation: use an arrow , ,A S B
  

… 

Or use the bold letter A, B, S… 

When considering the magnitude of a vector only, we can 

use the italic letter A, B, S… 

1.2 Addition of vectors: 

When adding vectors, the units of the vectors must be the same, the direction 

must be taken into account. 

Addition Principles:  

ⅰ: If two vectors are in the same direction: the magnitude of the resultant 

vector is equal to the sum of their magnitudes, in the same direction.  

ⅱ: If two vectors are in the opposite direction: the magnitude of the resultant 

vector is equal to the difference of the magnitude of the two vectors and 

is in the direction of the greater vector. 

ⅲ: If two vectors are placed tail-to-tail at an angle , it can also be 

represented as a closed triangle (Fig. 1.1). 
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

OA AC OC 
  

OB AC
 

  Because 

OA and OB
 

 are placed tail to tail to form two adjacent sides of a 

parallelogram and the diagonal OC


gives the sum of the vectorsOA and OB
 

. 

This is also called as ‘parallelogram rule of vector addition. 

Addition Methods: 

ds----using scale drawings 

 at right angle, and F1 = 3 N, F2 = 4 N, determine the 

  

(i): Graphical Metho

 For example: 

  F1 and F2 are

resultant force F (Fig. 1.2). 

Let 1cm=1N 

Measure the length of the resultant vector, we get length = 5cm, then 

ght angle, and F1 = 3 N, F2 = 4 N, determine the resultant 

resultant force, F = 5 N. 

(ii) Algebraic Methods 

   For example: 

F1 and F2 are at ri

force F (Fig. 1.3). 
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

Using the Pythagorean Theorem: 

Magnitude of the resultant force, 2 2 2 2
1 2 3 4 5F F F N    

The angle   between F and F1 is given by: 

2

1

4
tan

3

F

F
  

Or  

2 4
sin

5

F

F
  

Or  

1 3
cos

5

F

F
  

1.3 Resolving a vector into two perpendicular components 

For example, for a vector , OC


 is known, resolving it horizontally and

vertically (Fig. 1.4). 

Fig. 1.4 Resolving a vector into two 
perpendicular components


O A

B C

Magnitude of Horizontally component cosOA OC   

Magnitude of vertically component sinOB OC   

Thus, a force can be resolved into two perpendicular components (Fig. 1.5): 
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F and   are known. 

Fig. 1.5 Resolving a force into two 
perpendicular components

y
F


Fx

Y

X

F

 
cosxF F  sinyF F        

1.4  10 Worked examples 

1. Representation of vectors: 

(i) A displacement of 500 m due east 

Represent the displacement:  

 
Let scale:  1 100cm m

Then 

 
Note: of course you can also let scale: 1 250cm m  

Then:  

 
(ii) A force of (or F=100N) due north.  100F 


N

Let scale:  1 50cm N

Then  
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2. Addition of the vectors  

(i) are in the same direction. 

 Magnitude of the resultant 1 2F 1F F N1    

 Direction: the same direction of 1 2F and F
 

1 2F and F
 

 

(ii) are in the opposite direction. 

  Magnitude of the resultant 2 1F 4F F N    

  Direction: the same direction of 2F


1 2F and F
 

 

(iii)  are at right angles to each other. 

 Using the algebraic methods: 

 Magnitude of the resultant:  
2 2

1 2F 12.25 68.5 9F F N      


 

Direction: 

2

1

7.5
tan 2.14 arctan 2.14

3.5

F
Then

F
      

 

3. Calculate the resultant force of , ,  1F 2F 3F
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Strategy:  calculate the resultant of ①  1 2F and F

12 2 1 2F F F N    

② calculate the resultant force of , that is the resultant force 

of  

12 3F and F

1 2 3,F F and F

Magnitude of resultant force: 
2 2 2 2

12 3 2 6 6.32F F F N      

Direction: 

12

3

2 1
tan

6 3

F

F
     

1
arctan

3
   

 

4. A crane is used to raise one end of a steel girder off the ground, as shown 

in Fig. 4.1. When the cable attached to the end of the girder is at 20°to the 

vertical, the force of the cable on the girder is 6.5kN. Calculate the horizontal 

and vertical components of this force. 

 
Strategy: 

Resolving the force F = 6.5 kN 
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F1

F2

F

200

 

1 sin 20 6.5sin 20 2.2o oF F kN    (Horizontal components of the force) 

2 cos 20 6.5cos 20 6.1o oF F kN    (Vertical components of the force) 

 

 

5. (a) (i) State what is meant by a scalar quantity. 

  Scalar quantity: quantity has direction only. 

(ii) State two examples of scalar quantities. 

Example 1: mass 

Example 2: temperatures 

(b) An object is acted upon by two forces at right angles to each other. One of 

the forces has a magnitude of 5.0 N and the resultant force produced on the 

object is 9.5 N. 

Determine 

(i) The magnitude of the other force, 

Strategy: adding of vectors, using the Algebraic Methods 

Draw the forces below: 

 
And  2 2 2

1 2F F F 
2 2 2

25 9.5F   
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So,  2 8.1F N

(ii) The angle between the resultant force and the 5.0 N force. 

  1 5
cos 0.53

9.5

F

F
   

0arccos0.53 58  

F ma

 

So  

 

6. (a) State the difference between vector and scalar quantities. 

Answers: Vector quantities have direction and scalar quantities do not. 

(b) State one example of a vector quantity (other than force) and one example 

of a scalar quantity. 

Vector quantity: velocity, acceleration. 

Scalar quantity: mass, temperature. 

(c) A 12.0 N force and a 8.0 N force act on a body of mass 6.5 kg at the same 

time. For this body, calculate 

(i) The maximum resultant acceleration that it could experience, 

  Strategy: by the Newton’s second law,  , the maximum resultant 

acceleration when the body has the maximum resultant force. And when the 

two forces are at the same direction, the body has the maximum resultant 

force.  

So, resultant force,  1 2 8 20F F F N    12

So the maximum resultant acceleration, 220
3.1

6.5

F
a ms

m
  

F ma

 

(ii) The minimum resultant acceleration that it could experience. 

  Strategy: by the Newton’s second law,  , the minimum resultant 

acceleration when the body has the minimum resultant force. And when the 

two forces are at the opposite direction, the body has the minimum resultant 

force.  

That is, resultant force,  1 2 8 4F F F N    12

So the minimum resultant acceleration, 24
0.62

6.5

F
a ms

m
    

 

7. Figure 7.1 shows a uniform steel girder being held horizontally by a crane. 

Two cables are attached to the ends of the girder and the tension in each of 

these cables is T. 
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C

420420

T
T

Fig. 7.1
 

(a) If the tension, T, in each cable is 850 N, calculate 

(i) The horizontal component of the tension in each cable, 

  Answers:  cos 42 850 cos 42 632hT T N   

sin 42 sin 42 1138vT T T N  

1138vW T N

(ii) The vertical component of the tension in each cable, 

    

(iii) The weight of the girder. 

   Strategy: the girder is at a uniform state, so the weight of the girder is 

equal to the vertical component of the tension. 

 So weight,  

weight m g 

(b) On Figure 1.7 draw an arrow to show the line of action of the weight of 

the girder. 

 

8. Which of the following contains three scalar quantities? 
A Mass Charge Speed 

B Density Weight Mass 

C Speed Weight Charge 

D Charge Weight Density 

Solution: 

Scalar: quantity has direction only. 

Examples of scalar: mass, temperatures, volume, work… 

Vector: quantity both has magnitude and direction  

Examples of vectors: force, acceleration, displacement, velocity, 

momentum… 


 is a vector. Thus choose (A) And 
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9. The diagram below shows two vectors X and Y. 

 
Which of the following best represents the vector Z = X – Y. 

 
Strategy: 

If two vectors are placed tail-to-tail at an angle , it can also be represented as 

a closed triangle. 



 
OA AC OC 
  

OB AC
 

  Because  

Solution: 

And X = Z + Y, thus choose (B) 

 

10. The magnitude and direction of two vectors X and Y are represented by 

the vector diagram below. 

 
Which of the following best represents the vector (X–Y)? 
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Solution: 

Let X minus Y to be Z: X–Y = Z, thus X = Z + Y 

 
Choose (D): 

 

 

 

Chapter 2 Rectilinear motion 

2.1 Displacement and velocity 

Distance: is the magnitude of the path covered, is a scalar. 

SI unit: metre (m) 

Displacement: the change in position between the starting point and the end 

point. 

SI unit: metre (m) 

Displacement is a vector; its direction is from the starting point to end point. 

For example: 

(i) An ant crawl along the arc that start from O to A (Fig. 2.1), 
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Then:  

Distance 3.14R m     

Displacement 2OA m 


 

(ii) The ant now goes on crawling from A to B, 
Distance 1 4.14OCA AB R m    


 

Displacement 1OB m   

(iii) The ant now goes back from B to O, 

Note: the ant start from O then go back to O. that is starting point is O, the 

end point is O. 
Distance 2 5.14OCA AO R m    


 

Displacement 0OO m   

 

Speed: the distance traveled by a moving object over a period of time. 

Constant speed: the moving object doesn’t change its speed. 
tandis ce

time taken

s
v

t





( )average speed

 

Unit: 1m / s or ms  

Velocity: the speed in a given direction. 

Average velocity: the change in position (displacement) over a period of 

time. 

change in position displacement x s

time taken time taken t t


   


averagev


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Where  is displacement s


Unit: 1m / s or ms  

Velocity is a vector; the direction is the same as the direction of the 

displacement. 

Instantaneous velocity: the velocity that the moving object has at any one 

instance 
 

2.2 Acceleration 

Changing velocity (non-uniform) means an acceleration is present. 

We can define acceleration as the change of velocity per unit time. 

Uniform acceleration: the acceleration is constant, means the velocity of the 

moving object changes the same rate. 

Average acceleration: change in velocity over a period of time. 

Average acceleration
change in velocity

time taken
  

In symbol: 

average
v v u

a
t t

 
 


 

Where, v is the final velocity, u is the initial velocity. 

SI unit: Meters per second squared (m/s2) 

Acceleration is a vector; the direction is the same as the direction of the 

change of velocity. 
 

2.3 Equations for uniform acceleration 

Consider a body is moving along a straight line with uniform acceleration, 

and its velocity increases from u (initial velocity) to v (final velocity) in time 

t. 

First equation: 

acceleration
change in velocity

time taken

v u
a

t






 

So  

at v u  v u at or …… ①  

Second equation: 
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change in position displacement
average velocity

time taken time taken

x s
v

t t

 


 

   

Because the body is moving along a straight line in one direction, the 

magnitude of the displacement is equal to the distance. 

And for the acceleration is uniform, 

,
2

v u
vthe average velocity


  

So 

2

v u

t

s  or v  
( )

2

v u
s t




v u at 

…… ② 

Third equation: 

From equation ①,  and equation ②, ( )

2

v u
s t


  

2( ) 1

2 2

u at u
s t ut at

 
  

v u at

…… ③ 

Fourth equation: 

 From equation,  

We get: 
2 2

2 2 2 2 2 2

( )

1
2 2 ( )

2

v u at

v u uat a t u a ut at

 

     
 

But 21

2
s ut at 

2 2 2v u as 

 

So  

 …… ④ 

2.4 Displacement—time graphs with uniform acceleration 

Note: for a body moving along a straight line, we can only draw the 

displacement—time graphs (Fig. 2.2) 
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(i) Represents the body moving along a straight line with constant velocity; 

And the slope or gradient of the displacement—time graph represents the 

velocity of the body. 

(ii) The body keeps rest with displacement S2. 

(iii) The body keeps rest with zero displacement. 

(iv) The body moving along the opposite direction with constant velocity and 

initial displacement S0. 

(v) The point P means the displacement when the objects meeting with each 

other. 

(vi) Displacement of the body is S1 at time t1. 

2.5 Velocity—time graphs with uniform acceleration 
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(i) represents the body moving along a straight line with constant acceleration; 

And the slope or gradient of the velocity—time graph represents the 

acceleration of the body. 

(ii) The body moving with constant velocity V2. 

(iii) The body keeps rest with zero velocity. 

(iv)The body moving along a straight line with constant deceleration with 

initial velocity V0; and the slope or gradient of the velocity—time graph 

represents the deceleration of the body  

(v)The point P means the same velocity when the objects meeting with each 

other. 

(vi)Velocity of the body is V1 at time t1 and the area under a velocity—time 

graph measures the displacement traveled. 

 

2-6 Free-fall motion 

6.1 Free-fall motion 

The motion of a body that is only acted on by gravity and falls down from 

rest is called free-fall motion. This motion can occur only in a space without 

air. If air resistance is quite small and neglectable, the falling of a body in the 

air can also be referred to as a free-fall motion. 

Galileo pointed out: free-fall motion is a uniformly accelerated rectilinear 

motion with zero initial velocity. 

6.2 Acceleration of free-fall body 

All bodies in free-fall motion have the same acceleration. This acceleration is 

called free-fall acceleration or gravitational acceleration. It is usually 

denoted by g.  

The magnitude of gravitational acceleration g / ( 2m s ) 

Standard value:  29.80665 /g m s

s

The direction of gravitational acceleration g is always vertically downward. 

Its magnitude can be measured through experiments. 

Precise experiments show that the magnitude of g varies in different places 

on the earth. For example, at the equator . We take  

for g in general calculations. In rough calculations,  is used. 

29.780 /g m

10 /m s

29.81 /m s

2

As free-fall motion is uniformly accelerated rectilinear motion with zero 

initial velocity, the fundamental equations and the deductions for uniformly 
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accelerated rectilinear motion are applicable for free-fall motion. What is 

only needed is to take zero for the initial velocity (u) and replace acceleration 

a with g. 

 

2.7 Projectile motion 

If you throw an object which acted upon only by the force of gravity 

(neglecting air resistance) with a certain initial velocity, the body will move 

with only the force of gravity acting on it. Such motion is called projectile 

motion. 

(i) Vertical projection  

Such an object moves vertically as it has no horizontal motion. Its 

acceleration is  downwards. Using the direction code‘+ is upwards, 

－ is downwards’, its displacement, y, and velocity, v, after time t are given 

by: 

29.8ms

21

2

v u gt

y ut gt

 

 
 

Where u is the initial velocity 

(ii) Horizontal projection  

Think about a particle sent off in a horizontal direction and subject to a 

vertical gravitational force (its weight). Air resistance is neglected. We will 

analyze the motion in terms of the horizontal and vertical components of 

velocity. The particle is projected at time t = 0 at the origin of a system of x-y 

co-ordinates (Fig. 2.4) with velocity xu

0yu

 in the x direction. Think first about 

the particle’s vertical motion (in the y-direction). Throughout the motion it 

has an acceleration of g (the acceleration of free fall) in the y-direction. The 

initial value of the vertical component of velocity is  . The vertical 

component increases continuously under the uniform acceleration g. Using v 

= u + at, its value at time t is given by yv yv gt . Also at time t, the vertical 

displacement y downwards is given by 21

2
y gt . Now for the horizontal 

motion（in the x-direction）: Here the acceleration is zero, so the horizontal 

component of velocity remains constant at xu . at time t the horizontal 

displacement x is given by xx u t . To find the velocity of the particle at any 
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xv yvtime t, the two components and must be added vectorially. The direction 

of the resultant vector is the direction of motion of the particle the curve 

traced out by a particle subject to a constant force in one direction is a 

parabola. 

Fig. 2.4
 

 

2.8  20 Worked examples 

1. An aero plane taking off accelerates uniformly on a runway from a 

velocity of  to a velocity of 13ms 1ms  in 45s. 90

Calculate: 

(i) Its acceleration. 

(ii) The distance on the runway. 

Solution: data:  1 1u ms v m   3 93 s t 45s

Strategy: v u
v u at a

t


    , 21

2
s ut at   

Answers: 

193 3
2

45

v u
a ms

t
 

    

2 21 1
3 45 2 45 2160 2.16

2 2
s ut at m km          

 

2. A car accelerates uniformly from a velocity of 115ms  to a velocity of 

 with a distance of 125m. 125ms

Calculate: 

(i) Its acceleration 
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(ii) The time taken 

Solution: 

Data:  1 115 25 125u ms v ms s    m

Strategy: 
 2 2

2 2 2
2

v u
v u as a

s


     

        v u
v u at t

a


     

Answers: 
 2 2 2 2

225 15
1.6

2 2 125

v u
a m

s
s

 
  


 

        25 15
6.25

1.6

v u
v u at t s

a

 
       

 

3. A racing car starts from rest and accelerates uniformly at  in 

30seconds, it then travels at a constant speed for 2min and finally decelerates 

at  until it stops, determine the maximum speed in km/h and the total 

distance in km it covered. 

22ms

23ms

Strategy:  

First stage: , 1 20 2u ms a ms t    30 160v u at mss     

Second stage: moving with a constant speed 160ms  for 2min. 

Third stage:  1 1 260 0 3 ( )u ms v ms a ms decelerat     ion

Answers: 

First stage:  160v u at ms  

          2 2
1

1 1
2 30 900

2 2
s ut at m       

Second stage: the final speed of the first stage is the constant speed of the 

second stage. 

2 60 2min 60 2 60 7200

(1min 60 )

s vt m

s

      


 

Third stage: 
2 2 2

2 2
3

0 60
2 600

2 2 ( 3)

v u
v u as s m

a

 
     

 
 

So  

Maximum speed = 1 60
60 60 60 216 /

1000
ms km h      

Total distance =  1 2 3 900 7200 600 8700 8.7s s s m km      
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4. Figure 4.1 shows the shuttle spacecraft as it is launched into space. 

Fig. 4.1 shuttle spacecraft 
launching into space  

During the first 5 minutes of the launch the average acceleration of the 

shuttle is . 214.5ms

a. Calculate the speed of the shuttle after the first 5 minutes. 

b. Calculate how far the shuttle travels in the first 5 minutes. 

Data: 1 20 , 14.5 , 5min 300secu ms a ms t      

Strategy: 21
,

2
v u at s ut at   

0 14.5 300 4350 4.35v u at m km      

 

Answers: a.  

        b. 2 21 1
0 14.5 300 652500 652.5

2 2
s ut at m km         

 

5. Figure 5.1 shows an incomplete velocity—time graph for a boy running a 

distance of 100m. 

a. What is his acceleration during the first 4 seconds?  

b. How far does the boy travel during (i) the first 4 seconds, (ii) the next 9 

seconds? 

c. Copy and complete the graph showing clearly at what time he has 

covered the distance of 100m. Assume his speed remains constant at the 

value shown by the horizontal portion of the graph. 
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Solution: 

a. the gradient of the velocity—time graph represents the acceleration of the 

body. 

During the first 4 seconds, 5
gradient 1.25

4
   

2acceleration 1.25ms  

b. (i) the area under a velocity—time graph measures the displacement 

traveled. 

1
1

4 5 10
2

area S      

Displacement 10m  

(ii) the next 9 seconds, 2area 9 5 45S     

Displacement 45m  

c. during the first 13 seconds, the distance covered is 10 + 45 = 55m,  

The area needed  3S 100 55 45  

So from 13s to 22 s, he covers S3 = 45 m. 

 

6. A constant resultant horizontal force of N acts on a car of mass 

900 kg, initially at rest on a level road. 

31.8 10

(a) Calculate 

(i) The acceleration of the car, 

Strategy: by the Newton’s second law, F ma , F
a

m
  

So 
3

21.8 10
2

900

F
a ms

m Kg


    
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(ii) The speed of the car after 8.0 s, 

Strategy: initial velocity, , 0u  8.0t s , 22a ms

v u at 
10 2 8 16v ms   

4 1900 16 1.44 10momentum mv kgms

. And from the equation: 

, gives 

 

(iii) The momentum of the car after 8.0 s, 

Strategy: The product of an object’s mass m and velocity v is called its 

momentum: 
      

(iv) The distance traveled by the car in the first 8.0 s of its motion, 

Strategy: 21

2
s ut at   

21
0 2 8 64

2
S m    

31.8 10 64 115.2W FS kJ    

 

(v) The work done by the resultant horizontal force during the first 8.0 s. 

Strategy: Work done=force × distance moved in direction of force. 

 

(b) On the axes below (Fig. 6.1) sketch the graphs for speed, v, and distance 

traveled, s, against time, t, for the first 8.0 s of the car’s motion. 

Strategy: for the first 8.0 s, the car is moving with constant acceleration, 

, so the gradient of the v—t graph is equal to 22a ms 22ms  

 
(c) In practice the resultant force on the car changes with time. Air resistance 

is one factor that affects the resultant force acting on the vehicle. 

You may be awarded marks for the quality of written communication in your 

answer. 
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(i) Suggest, with a reason, how the resultant force on the car changes as its 

speed increases. 

Answers: the resultant force decreases as its speed increases, because the air 

resistance increases as its speed increases, and the engine force of the car is 

constant, so the constant force decreases. 

(ii) Explain, using Newton’s laws of motion, why the vehicle has a maximum 

speed. 

As the velocity increases, the air resistance increases, so the resultant force 

decreases, which means the acceleration of the car decreases, but the velocity 

is still increasing till the resultant force is zero (acceleration of the car is zero), 

according to the Newton’s first law, then the vehicle has a maximum speed. 

 

7. Figure 7.1 represents the motion of two cars, A and B, as they move along 

a straight, horizontal road. 

Fig. 7.1 motion of two cars
 

(a) Describe the motion of each car as shown on the graph. 

 (i) Car A: is moving with constant speed 116ms

(ii) Car B: accelerates in the first 5 seconds, and then moving with constant 

speed . 118ms

(b) Calculate the distance traveled by each car during the first 5.0 s. 

(i) Car A: 

Strategy: car A moving with constant speed, so distance of car A,  
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So  16 5 80AS ut m   

(ii) Car B:  

Strategy: in the first 5 seconds, car B accelerates, and from the graph, the 

gradient of the v—t graph for B is18 14
0.8

5




20.8a ms

, that is the acceleration of B is 

 

So 2 21 1
14 5 0.8 5 80

2 2BS ut at m         

(c) At time t = 0, the two cars are level. Explain why car A is at its maximum 

distance ahead of B at t = 2.5 s 

Because car A is faster than car B at the first 2.5s, so for the first 2.5s, the 

distance between them increases till they have the same speed at 2.5s. After 

2.5s, car B is faster than car A, so the distance then decreases. So at the time 

2.5s, car A is at its maximum distance ahead of B. 

 

8. A car accelerates from rest to a speed of 26ms-1. Table 8.1 shows how the 

speed of the car varies over the first 30 seconds of motion. 

Table 8.1 
Time/s 0 5.0 10.0 15.0 20.0 25.0 30.0 

Speed/ms-1 0 16.5 22.5 24.5 25.5 26.0 26.0 

(a) Draw a graph of speed against time on the grid provided (Fig. 8.1). 

 
Note: you must draw the right scales and the six points are correctly plotted, 

and it is a trend line not a straight line. 
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(b) Calculate the average acceleration of the car over the first 25 s. 

Strategy: 226
1.04

25

v
a ms

t


  


 

(c) Use your graph to estimate the distance traveled by the car in the first 25 

s. 

Strategy: area under the v—t graph represents the distance traveled. 

So from the graph, its distance is 510m 

(d) Using the axes below, sketch a graph to show how the resultant force 

acting on the car varies over the first 30 s of motion. 

Solution: 

From table 3.1, the rate of change of speed decreases to zero, thus the 

resultant force decreases to zero. As shown in Fig. 8.2. 

 
(e) Explain the shape of the graph you have sketched in part (d), with 

reference to the graph you plotted in part (a). 

 Because the first graph shows that the gradient of the car decreases, which 

means that the acceleration of the car decreases, and by the Newton’s second 

law, , the force, F, decreases, and as the acceleration is changing in 

the first 25s, so the force is also changing, so the graph of the force is not a 

straight line. 

F ma

 

9. A supertanker of mass , cruising at an initial speed of , 

takes one hour to come to rest. 

84.0 10 kg 4.5 /m s

(a) Assuming that the force slowing the tanker down is constant, calculate 

(i) The deceleration of the tanker, 

Solution: 
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The force slowing the tanker down is constant, so the tanker decelerates 

uniformly. Therefore, deceleration of the tanker is given by 

3 20 4.5 4.5
1.25 10 /

1 60 60
a m s

t
 

   
 

 

(ii) The distance travelled by the tanker while slowing to a stop. 

Solution: 

The average speed is given by 
0 4.5

2.25 /
2

v m s


   

So the distance traveled: 2.25 1 60 60 8100s vt m       

(b) Sketch, using the axes below, a distance-time graph representing the 

motion of the tanker until it stops. 

Time/s

Distance/m

Fig. 9.1 Distance—time graph
 

(c) Explain the shape of the graph you have sketched in part (b). 

Solution: 

Because the speed is decreasing, the gradient of the curve decreases in the 

distance-time graph. 

 

10. (a) A cheetah accelerating uniformly from rest reaches a speed of 

in 2.0 s and then maintains this speed for 15 s. Calculate 29 /m s

(i) Its acceleration, 

Solution: 

Using 229 0
14.5 /

2

v u
a m s

t

 
    

(ii) The distance it travels while accelerating, 

Solution: 
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2 21 1
0 14.5 2 29

2 2
s ut at m      

29 15 435s vt m   

 

(iii) The distance it travels while it is moving at constant speed. 

Solution: 

 

(b) The cheetah and an antelope are both at rest and 100 m apart. The cheetah 

starts to chase the antelope. The antelope takes 0.50 s to react. It then 

accelerates uniformly for 2.0 s to a speed of and then maintains this 

speed. Fig. 10.1 shows the speed-time graph for the cheetah. 

25 /m s

 
(i) Using the same axes plot the speed-time graph for the antelope during the 

chase. 

Solution: 

The antelope takes 0.50 s to react and accelerates uniformly for 2.0 s to a 

speed of 25 m/s. thus we can get the speed-time graph beginning with 0.50 s. 

(ii) Calculate the distance covered by the antelope in the 17 s after the 

cheetah started to run. 

Solution: 

The antelope accelerates from rest, and reaches to a speed of 25 m/s in 2 s. 

then maintains this speed. Thus the distance is given by 

2 25 (17 2 0.5) 12.5 2 25 14.5 387.5
2

v u
s m


            

(iii) How far apart are the cheetah and the antelope after 17 s? 
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Solution: 

From (a), the distance of cheetah is 1 435 29 464s m  

1100 387.5 100 464 23.5

 

And at the beginning, they are 100 m apart. Thus  

s s s m         

 

11. Figure 11.1 shows a distance-time graphs for two runners, A and B, in a 

100 m race. 

Fig. 11.1 distance—time graph for two runners
 

(a) Explain how the graph shows that athlete B accelerates throughout the 

race. 

Solution: 

The gradient is changing (increasing) 

(b) Estimate the maximum distance between the athletes. 

Solution: 

When B’s speed is the same as A’s, it has the maximum distance between the 

athletes. From the graph is the gradient of B curve is the same that of A. 

From the graph, the maximum distance is 25 m. 

(c) Calculate the speed of athlete A during the race. 

Solution: 

For A, it has a distance in time 11 s, thus  
tan 100

9.1 /
11

dis ce m
speed m s

time s
    

(d) The acceleration of athlete B is uniform for the duration of the race. 
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(i) State what is meant by uniform acceleration. 

(ii) Calculate the acceleration of athlete B. 

Solution: 

(i) The acceleration keeps the same or the velocity increases uniformly with 

time. 

(ii) For B, its initial velocity is u = 0 m/s, distance s = 100 m, time taken  

t = 11 s. 

Thus, using 2 21 1

2 2
s ut at at   , gives 

2
2 2

2 2 100
1.7 /

11

s
a m s

t


    

 

12.An aircraft accelerates horizontally from rest and takes off when its speed 

is 82 m s-1. The mass of the aircraft is and its engines provide a 

constant thrust of . 

45.6 10 kg
51.9 10 N

(a) Calculate 

(i) The initial acceleration of the aircraft, 

Solution: 

(i) Initially, the resultant force , from Newton’s second law: 51.9 10F   N

F ma , we can get that  
5

2
4

1.9 10
3.4 /

5.6 10

F N
a m s

m kg


  


 

(ii) The minimum length of runway required, assuming the acceleration is 

constant. 

Solution: let the minimum length of the runway required L. thus  
2 2 2v u aL   

Therefore 
2 2 282 0

989
2 2 3.4

v u
L m

a

 
  


 

(b) In practice, the acceleration is unlikely to be constant. State a reason for 

this and explain what effect this will have on the minimum length of runway 

required. 

Solution: 

In practice, the air resistance increases with speed, hence the runway will be 

longer. 
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(c) After taking off, the aircraft climbs at an angle of 22° to the ground. The 

thrust from the engines remains at . Calculate 51.9 10 N

(i) The horizontal component of the thrust, 

(ii) The vertical component of the thrust. 

Solution: 

 
The thrust  51.9 10T N 

0 5
1 cos 22 1.76 10F T N  

0 5
2 sin 22 0.71 10F T N  

The horizontal component of the thrust is given by 

 

The vertical component of the thrust is given by 

 

 

13. Figure 13.1 shows how the velocity, v, of a car varies with time, t. 

Fig. 13.1 velocity—time graph
 

(a) Describe the motion of the car for the 50 s period. 

You may be awarded additional marks to those shown in brackets for the 

quality of written communication in your answer. 

Solution: 

0—20 s: the car uniformly accelerates to a velocity of 15 m/s. 

20—40 s: the car moves with constant velocity 15 m/s. 

40—50 s: the car uniformly decelerates from a velocity of 15 m/s to 0 m/s. 
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(b) The mass of the car is 1200 kg. Calculate for the first 20 s of motion, (b) 

(i) the change in momentum of the car, 

(b) (ii) the rate of change of momentum, 

(b) (iii) the distance travelled. 

Solution: for the first 20 s of motion 

(i) At t = o s, the initial velocity is u = 0 m/s; at t = 20 s, the final velocity is v 

= 15 m/s. thus the change in momentum of the car is given by 

Therefore,  

 4(1200 ) 15 / 0 1.8 10 /p mv mu kg m s kg m s        

(ii) 
4

3 21.8 10 /
The rate of change of momentum 0.9 10 /

20

change in momentum kg m s
kg m s

time taken

 
    

(iii) The area under a velocity—time graph measures the displacement 

traveled. 

Thus the area for the first 20 s is given by  
1

20 15 150
2

A      

Therefore the distance traveled is 150 m. 

 

14. A car is travelling on a level road at a speed of 15.0 m s-1 towards a set of 

traffic lights when the lights turn red. The driver applies the brakes  

0.5 s after seeing the lights turn red and stops the car at the traffic lights. 

Table 14.1 shows how the speed of the car changes from when the traffic 

lights turn red. 

Table 14.1 
Time/s 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

Speed/ms-1 15.0 15.0 12.5 10.0 7.5 5.0 2.5 0.0 

(a) Draw a graph of speed on the y-axis against time on the x-axis on the grid 

provided (Fig. 14.1). 
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(b) (i) State and explain what feature of the graph shows that the car’s 

deceleration was uniform. 

Solution: 

Deceleration is uniform because the graph is a decreasing straight line. And 

the gradient of the line represents the deceleration. 

(b) (ii) Use your graph to calculate the distance the car travelled after the 

lights turned red to when it stopped. 

Solution: 

Distance traveled = area under the line (0s to 3.5s). 
1

Area (0.5 3.5) 15 30
2

      

Therefore, distance traveled = 30 m. 

 

15. Galileo used an inclined plane, similar to the one shown in Fig. 15.1, to 

investigate the motion of falling objects. 

(a) Explain why using an inclined plane rather than free fall would produce 

data which is valid when investigating the motion of a falling object. 

Solution: 

Freefall is too quick; Galileo had no accurate method to time freefall. 

(b) In a demonstration of Galileo’s investigation, the number of swings of a 

pendulum was used to time a trolley after it was released from rest. A block 

was positioned to mark the distance that the trolley had travelled after a 

chosen whole number of swings. 
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Fig. 15.1  
The mass of the trolley in Fig. 15.1 is 0.20 kg and the slope is at an angle of 

1.8°to the horizontal. 

(b) (i) Show that the component of the weight acting along the slope is about 

0.06 N. 

Solution: 

The component of weight acting along the slope is given by 
0

1 sin1.8 0.2 9.81 0.031 0.06W W N      

(b) (ii) Calculate the initial acceleration down the slope. 

Solution: 

The initial resultant force along the slope equals to W1, thus 

21 0.06
0.3 /

0.2

W
a m s

m
    

 

(c) In this experiment, the following data was obtained. A graph of the data 

(Fig. 15.2) is shown below it. 
Time/pendulum swings Distance travelled/m 

1 0.29 

2 1.22 

3 2.70 

4 4.85 
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(c) From Fig. 15.2, state what you would conclude about the motion of the 

trolley? 

Give a reason for your answer. 

Solution: 

The gradient of the curve increases as time increasing. Thus the speed of the 

trolley is increasing. 

(d) Each complete pendulum swing had a period of 1.4 s. Use the 

distance-time graph above to find the speed of the trolley after it had 

travelled 3.0 m. 

Solution: 

From Fig. 15.2, the time taken for traveling 3.0 m is given by 
1.4

3 1.4 1.5 4.41
10

t s      
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And initial speed , thus 0 /u m s

2 2

u v vt
s t


   , gives  

2 2 3.0
Speed,  v   1.36 /

4.41

s m
m s

t s


    

 

16. An object is projected horizontally at a speed of 115ms  from the top of a 

tall tower of height35.0 . Calculate: m

a. how long it takes to fall to the ground, 

b. How far it travels horizontally. 

c. Its speed just before it hits the ground. 

Solution: 

Strategy: horizontal projection, data: 115xu ms , 35h m  

a. choose downwards as ‘+’ direction 

And 21 2 2 35
2.67

2 9.8

h
h gt t

g


     s  

b. 15 2.67 40xX u t m     

c. To find the velocity of the particle at any time t = 2.67s, the two 

components xv yvand must be added vectorially. 
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115x xv u ms   
19.8 2.67 26.2yv gt ms     

So the resultant speed 2 2 30.2x yv v v ms 1    

Its direction is arctan 29.8x

y

v

v
     to the vertical. 

 

17. The aeroplane shown in Fig. 17.1 is traveling horizontally at 95ms-1. It 

has to drop a crate of emergency supplies. 

The air resistance acting on the crate may be neglected. 

Fig. 17.1  
(a) (i) The crate is released from the aircraft at point P and lands at point Q. 

Sketch the path followed by the crate between P and Q as seen from the 

ground. 

Note: the path is a parabola from P to Q.  

(ii) Explain why the horizontal component of the crate’s velocity remains 

constant while it is moving through the air. 

Because there is no horizontal force, by the Newton’s second law, F = ma, 

there is no acceleration. So the crate’s velocity remains constant while it is 

moving through the air. 

(b) (i) To avoid damage to the crate, the maximum vertical component of the 

crate’s velocity on landing should be 32ms-1. Show that the maximum height 

from which the crate can be dropped is approximately 52 m. 
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Strategy: the initial vertically velocity, 0u  , final vertically velocity, 

, so by the equation,  132v ms 2 2 2v u gH 

So the height,
2 2 232

52
2 2 9.8

v u
H m

g


  



v u gt

 

(ii) Calculate the time taken for the crate to reach the ground if the crate is 

dropped from a height of 52 m. 

 Strategy: from the equation,  

32
3.3

9.8

v
t s

g
    

(iii) If R is a point on the ground directly below P, calculate the horizontal 

distance QR. 

   Strategy: the horizontal displacement x is given by xx u t , where 

 195 3.3xu ms t s 

So QR = 95×3.3 = 313.5 m 

(c) In practice air resistance is not negligible. State and explain the effect this 

has on the maximum height from which the crate can be dropped. 

 Strategy: considering the air resistance, then the resultant force = weight of 

the crate minus the air resistance, so the resultant force decreases, then the 

acceleration decreases. So the maximum height from which the crate can be 

dropped increases. 

 

18. A dart is thrown horizontally at a speed of 8.0 m s-1 towards the centre of 

a dartboard that is 2.0 m away. At the same instant that the dart is released, 

the support holding the dartboard fails and the dartboard falls freely, 

vertically downwards. The dart hits the dartboard in the centre before they 

both reach the ground. 

(a) State and explain the motion of the dart and the dartboard, while the dart 

is in flight. 

You may be awarded additional marks to those shown in brackets for the 

quality of written communication in your answer. 

Solution: 

There is no air resistance. The acceleration of both the dart and the dartboard 

is always equal to g and is always downwards because the force of gravity 

acts downwards. The acceleration therefore only affects the vertical motion 
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of the object. Thus the dartboard accelerates vertically downwards at the 

same rate as the dart. 

The horizontal velocity of the dart is constant because the acceleration of the 

object does not have a horizontal component, which results in a parabolic 

path. 

 

(b) Calculate 

(i) The time taken for the dart to hit the dartboard, 

(ii) The vertical component of the dart’s velocity just before it strikes the 

dartboard, 

(iii) The magnitude and direction of the resultant velocity of the dart as it 

strikes the dartboard. 

Solution: 

(i) The horizontal distance  and the horizontal speed , thus  2s m 8 /u m s

  2
0.25

8

s
t s

u
  

29.8 /g m s

0 9.8 0.25 2.45 /v u at gt m s      

 

(ii) The dart accelerates downwards at an acceleration , thus when 

t = 0.25 s.  
 

(iii) The magnitude of the resultant velocity of the dart is given by 

    2 2 2 28 (2.45) 8.4 /rv u v m s      

 
Thus 

1 02.45
tan ( ) 17

8
    

 

19. Fig. 19.1 shows the path of a ball thrown horizontally from the top of a 

tower of height 24 m which is surrounded by level ground. 
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(a) Using two labelled arrows, show on Figure 3 the direction of the velocity, 

v, and the acceleration, a, of the ball when it is at point P. 

Solution: 

The velocity vector is tangential to path. 

The acceleration vector is vertically downwards. 

Note: 

A projectile is any object acted upon only by the force of gravity. And  

(i) The acceleration of the object is always equal to g and is always 

downwards because the force of gravity acts downwards. The acceleration 

therefore only affects the vertical motion of the object. 

(ii) The horizontal velocity of the objects is constant because the acceleration 

of the object does not have a horizontal component. 

(iii) The motions in the horizontal and vertical directions are independent of 

each other. And can be treated separately. 

(b) (i) Calculate the time taken from when the ball is thrown to when it first 

hits the ground. Assume air resistance is negligible. 

Solution: 

Vertically, 21

2
H g t , gives 

2 2 24
2.21

9.8

H
t s

g


    

(b) (ii) The ball hits the ground 27 m from the base of the tower. Calculate 

the speed at which the ball is thrown. 

Solution: 

Horizontally, the speed is constant, and s vt , gives 
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27
12.2 /

2.21

s
v m s

t
    

 

20. A digital camera was used to obtain a sequence of images of a tennis ball 

being struck by a tennis racket. The camera was set to take an image every 

5.0 ms. The successive positions of the racket and ball are shown in Fig. 

20.1. 

Fig. 20.1  
(a) The ball has a horizontal velocity of zero at A and reaches a constant 

horizontal velocity at D as it leaves the racket. The ball travels a horizontal 

distance of 0.68m between D and G. 

(a) (i) Show that the horizontal velocity of the ball between positions D and 

G in Fig. 20.1 is about 45ms-1. 

Solution: 

The camera was set to take an image every 5.0 ms, thus the time interval 

between D and G is . 33 5.0 15 15 10 0.015ms s s    

The horizontal velocity is given by 
0.68

45 /
0.015

s m
v m s

t s
  

33 5.0 15 15 10 0.015t ms s s     

 

(a) (ii) Calculate the horizontal acceleration of the ball between A and D. 

Solution: 

The time interval between A and D is . 

And ,  0 /Av m s s45 /Dv m

Thus the acceleration is given by 

245 0
3000 /

0.015
D Av v

a m s
t

 
    

(b) At D, the ball was projected horizontally from a height of 2.3 m above 

level ground. 
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(b) (i) Show that the ball would fall to the ground in about 0.7 s. 

Solution: 

Assuming the ball falls freely. Thus vertically: 

21

2
h gt  

Gives 

2 2 2.3
0.7

9.81fall

h
t s

g


  

(45 / ) 0.7 31.5D fall

 

(b) (ii) Calculate the horizontal distance that the ball will travel after it leaves 

the racket before hitting the ground. Assume that only gravity acts on the ball 

as it falls. 

Solution: 

The horizontal distance is given by 

s v t m s s m     

(b) (iii) Explain why, in practice, the ball will not travel this far before hitting 

the ground. 

Solution: 

In practice, there is air resistance causing horizontal deceleration. 

 

 

 

Chapter 3 Forces and Newton’s laws of motion 

3.1 Force definition 

Force is a vector; the SI unit is the Newton (N). 

If two or more forces act on something, their combined effect is called the 

resultant force. 

Two simple examples are shown below: 

 
Newton definition: 

1 Newton (N), as the amount of force that will give an object of mass 1 kg an 
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acceleration of . 21m s

3.2 Weight and g 

On Earth, everything feels the downward force of gravity. This gravitational 

force is called weight. As for other forces, its SI unit is the Newton (N). 

Near the Earth’s surface, the gravitational force on each kg is about 10 N; the 

gravitational field strength is 10 N kg -1. This is represented by the symbol g. 

So weight = mass × gravitational field strength 

In symbol  

W = mg 

For example, in the diagram below, all the masses are falling freely (gravity 

is the only force acting). From F = ma, it follows that all the masses have the 

same downward acceleration, g. this is the acceleration of free fall. 

210
weight

acceleration ms g
mass

    

 
Note: you can think of g: 

Either as a gravitational field strength of 10 N kg -1 

Or as an acceleration of free fall of 10 m s -2 

In more accurate calculations, the value of g is normally taken to be 9.81, 

rather than 10. 

 

3.3 Newton’s first law of motion 

If there is no resultant force acting: 

① A stationary object will stay at rest, 

② A moving object will maintain a constant velocity (a steady speed in a 
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straight line). 

From Newton’s first law, it follows that if an object is at rest or moving at 

constant velocity, then the forces on it must be balanced. 

Note: the more mass an object has, the more it resists any change in motion 

(because more force is needed for any given acceleration). Newton called this 

resistance to change in motion inertia. 

Momentum: 

The product of an object’s mass m and velocity v is called its momentum: 

momentum mv  
1kg ms . It is a vector. Momentum is measured in

3.4 Newton’s second law 

The rate of change of momentum of an object is proportional to the resultant 

force acting. 

This can be written in the following form: 

tan
change in momentum

resul t force
time taken

  

In symbol: 
mv mu

F
t


 ……  ① 

Where v is final velocity, u is initial velocity of an object. 

Equation  can be rewritten ①
( )m v u

F
t


  

And acceleration, v u
a

t




F ma

. So 

……  ② 

Note:  

1. Equation  and  are therefore different versions of the same princip① ② le. 

2. F = ma cannot be used for a particle traveling at very high speeds because 

its mass increases. 

3. When using equations  and , remember that ① ② F is the resultant force 

acting. For example, for the figure below, the resultant force is  

to the right. The acceleration a can be worked out as follows: 

26 20 6N 

26
3

2

F
a m

m
s    
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Impulse: 

As (m v u
F

t




)  can be rewritten Ft mv mu   

In words force × time = change in momentum. 

The quantity ‘force × time’ is called an impulse. 

A given impulse always produces the same change in momentum, 

irrespective of the mass. For example, if a resultant force of 6 N acts for 2s, 

the impulse delivered is 6×2=12Ns. 

This will produce a momentum change of 112kgms  

So a 4 kg mass will gain  of velocity 13ms

Or a 2 kg mass will gain  of velocity, and so on. 16ms

 

The graph below is for a uniform force of 6 N. in 2s, the impulse delivered is 

12 Ns. numerically, and this is equal to the area of the graph between the 0 

and 2 s points. 

 

3.5 Newton’s third law of motion 

If A is exerting a force on B, then B is exerting an equal but opposite force on 

A. 

The law is sometimes expressed as follows: 

To every action, there is an equal but opposite reaction. 

Note:  

·It does not matter which force you call the action and which the reaction. 

One cannot exist without the other. 

·the action and reaction do not cancel each other out because they are acting 
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on different objects. 

 

3.6 Balanced forces 

When forces act on a point object, the object is in equilibrium means the 

resultant force is zero (the object keeps at rest or moving at constant speed). 

In other words, when a point object keeps at rest or moving at constant speed, 

means it is in equilibrium and the resultant forces on it is zero. 

Conditions for equilibrium for two or three coplanar forces acting at a point: 

(i) When two forces act on a point object, the object is in equilibrium (at rest 

or moving at constant velocity) only if the two forces are equal and opposite 

of each other. The resultant of the two forces is therefore zero. The two 

forces are said to be balanced. 

(ii) When three forces act on a point object, the object is in equilibrium (at 

rest or moving at constant velocity) only if the resultant of any two of the 

forces is equal and opposite to the third force. 

·resolve each force along the same parallel and perpendicular lines 

·balance the components along each line. 
 

3.7 Centre of gravity and Determination of Centre of Gravity (c.g.) of 

irregular lamina using the plumb line method 

(i) An object may be made to balance at a particular point. When it is 

balanced at this point, the object does not turn and so all the weight on one 

side of the pivot is balanced by the weight on the other side. Supporting the 

object at the pivot means that the only force which has to be applied at the 

pivot is one to stop the object falling—that is, a force equal to the weight of 

the object. Although all parts of the object have weight, the whole weight of 

the object appears to act at his balance point. This point is called the centre of 

gravity of the object. 

 Center of Gravity: The point on the object that no turning effect produced 

by the force of the gravity. 

Note: for a uniform body such as a ruler, the centre of gravity is at the 

geometrical centre. 

(ii) Determination of Centre of Gravity (c.g.) of irregular lamina using the 

plumb line method: 
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Suppose we have to find the c.g. of an irregularly shaped lamina of cardboard 

(Fig. 3.1). 

Make a hole A in the lamina and hang it so that it can swing freely on a nail 

clamped in a stand. It will come to rest with its c.g. vertically below A. to 

locate the vertical line through A tie a plumb line to the nail, the figure below, 

and mark its position AB on the lamina. The c.g. lies on AB. 

Hang the lamina from another position C and mark the plumb line position 

CD. The c.g. lies on CD and must be at the point of intersection of AB and 

CD. Check this by hanging the lamina from a third hole. Also try balancing it 

at its c.g. on the rip of your fore-finger. 

 

 

3.8  11 Worked examples 

1. A rocket engine ejects 100kg of exhaust gas per second at a velocity 

(relative to the rocket) of 200m/s (Fig. 1.1). What is the forward thrust (force) 

on the rocket? 

Fig. 1.1
 

By Newton’s third law, the forward force on the rocket is equal to the 

backward force pushing out the exhaust gas. By Newton’s second law, this 

force F is equal to the momentum gained per second by the gas, so it can be 
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calculated using equation (m v u
F

t

)
  with the following values: 

1100 1 0 200m kg t s u v ms     

So, ( ) 100 (200 0)
20000

1

m v u
F N

t

  
   . 

 

2. A block of mass 2kg is pushed along a table with a constant velocity by a 

force of 5N. When the push is increased to 9N, what is  

a. the resultant force, 

b. the acceleration？ 

Solution: when the block moves with constant velocity the forces acting on it 

are balanced. The force of friction opposing its motion must therefore be 5N. 

a. When the push is increased to 9N the resultant force F on  the block is 

(9-5) N=4N, (since the frictional force is still 5N). 

b. The acceleration a is obtained from F ma  where F=4N and m=2kg. 
2

24 4
2

2 2

F N kgms
So a ms

m kg kg


     

 

3. A car of mass 1200kg traveling at 72km/h is brought to rest in 4s. Find  

a. the average deceleration, 

b. the average braking force, 

c. The distance moved during the deceleration. 

Solution: 

a. The deceleration is found from v u at   where 0v  . 

172 1000
72 / 20

60 60
u km h ms


  


 

And  4t s

Hence  0 20 4a  

So  25a ms 

The deceleration is  25ms

b. The average braking force F is given by F ma , where 1200kg  and 
25 . Therefore  

m 

a ms 
1200 ( 5) 6000F N      

‘－’ represents the direction of the braking force is opposite to the motion of 
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the car. 

So the braking force is 6000N. 

c. To find the distance moved, we used 
20 0

4 40
2 2

u v
s t

 
    m  

 

4. (a). what resultant force produces an acceleration of  in a car of 

mass 1000kg. 

25ms

(b). what acceleration is produced in a mass of 2kg by a resultant force of 

30N. 

Solution: 

a. use 1000 5 5000F ma N     

b. 230
15

2

F
F ma a ms

m
      

 

5. A rocket has a mass of 500kg. 

a. What is its weight on earth where g=10N/kg. 

b. At lift-off the rocket engine exerts an upward force of 25000N. What is the 

resultant force on the rocket? What is its initial acceleration？ 

Solution： 

a. weight=mass × gravitational field strength 

weight 500 10 5000N    

b. resultant force = upward force - weight=25000 – 5000 = 20000N 

 So initial acceleration, 2tan 20000
40

500

resul t force
a m

mass
s    

 

6. An athlete trains by dragging a heavy load across a rough horizontal 

surface (Fig. 6.1). 

F1=Fcos250

F2 = F sin250

Fig. 6.1
 

http://www.mppe.org.uk

Copyright  © mppe.org.uk and its license. All Rights Reserved 



The athlete exerts a force of magnitude F on the load at an angle of 250 to the 

horizontal. 

(a) Once the load is moving at a steady speed, the average horizontal 

frictional force acting on the load is 470 N. 

Calculate the average value of F that will enable the load to move at constant 

speed. 

Solution: 

The load is moving at constant speed, from Newton’s first law, the resultant 

force is equal to zero. Thus 

F1 = Fcos250 = frictional force = f = 470 N 

The average value of F is given by 

0

470
519

cos 25

N
F N   

 

(b) The load is moved a horizontal distance of 2.5 km in 1.2 hours. 

Calculate 

(i) The work done on the load by the force F. 

Solution: 

Work done=force × distance moved in direction of force. 
0 3 3

1 ( cos 25 ) (2.5 10 ) 470 2.5 10 1175W F S F N m kJ          

 

(ii) The minimum average power required to move the load. 

Solution: 
31175 10

272
1.2 60 60

J
W

s

work done
power

time taken


 
 

  

 

(c) The athlete pulls the load uphill at the same speed as in part (a). 

Explain, in terms of energy changes, why the minimum average power 

required is greater than in (b)(ii). 

Solution: 

When the load is pulled uphill, some of the work need to be done to increase 

the gravitational potential energy. 

 

7. For the figure below, if P is a force of 20N and the object moves with 

constant velocity. What is the value of the opposing force F? 
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Solution: 

By the Newton’s first law of motion, the object is moving with constant 

velocity, its resultant force is zero, that is 0P F   

So 20F P N   

 

8. An object resting on a horizontal surface (Fig. 8.1), the resultant force is 

zero. 

 
Then W = S 

 

9. An object of weight W = 5N is moving along a rough slope that is at an 

angle of 30    to the horizontal with a constant speed, the object is acted 

by a frictional force F and a support force S, as shown in Fig 9.1: 

Calculate the frictional force F and the support force S. 

W

F

S

Fig. 9.1



 
Strategy: 
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The object moving down the slope with a constant speed means it keeping in 

equilibrium, that is the resultant of the three forces W, F, S is zero. Therefore 

resolve the forces along the slope and vertically to the slope (Fig. 9.2). 





 
From the figure, by the equilibrium condition,  

W2 = F     W1 = S 

And  2 sin 5sin 30 2.5oW W N  

1 cos 5cos30 4.3oW W N        

Frictional force F = W2 = 2.5N 

Support force S = W1 = 4.3N 

 

10. Figure 10.1 shows a stationary metal block hanging from the middle of a 

stretched wire which is suspended from a horizontal beam. The tension in 

each half of the wire is 15 N. 
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200200

15 N 15 N
T1 T2

A

Metal block

weight

Fig. 10.1
 

(a) Calculate for the wire at A, 

s, (i) The resultant horizontal component of the tension force

     The resultant horizontal component of the tension forces is equal to  
      1 2cos 20 cos 20 0T T 

1 2sin 20 sin 20 10.3T T T N  

10.3W T N

(ii) The resultant vertical component of the tension forces. 

   The resultant vertical component of the tension forces, 
    

(b) (i) State the weight of the metal block. 

     Strategy: the metal block is at a stationary state, 

      So weight of the metal block,  

(ii) Explain how you arrived at your answer, with reference to an 

appropriate law of motion. 

Strategy: From Newton’s first law, it follows that if an object is at rest or 

moving at constant velocity, then the forces on it must be balanced. 

 

11. Figure 11.1 shows a sledge moving down a slope at constant velocity. 

The angle of the slope is 22°. 
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The three forces acting on the sledge are weight, W, friction, F, and the 

normal reaction force, R, of the ground on the sledge. 

(a) With reference to an appropriate law of motion, explain why the sledge is 

moving at constant velocity. 

Solution: 

Because the sledge is moving at constant velocity, the resultant force must be 

zero. 

(b) The mass of the sledge is 4.5 kg. Calculate the component of W, 

(b) (i) parallel to the slope, 

(b) (ii) perpendicular to the slope, 

Solution:  

(i) parallel to the slope: 

   0 0 0
1 sin 22 sin 22 (4.5 ) (9.81 / )sin 22 16.5W W mg kg N kg N    

0 0 0
2 cos22 sin 22 (4.5 ) (9.81 / )cos22 41W W mg kg N kg N    

1 16.5

(ii) Perpendicular to the slope 

 

(c) State the values of F and R. 

Solution: The sledge is in equilibrium (moving with constant velocity), thus 

the resultant force is zero. 

Therefore 

F W N 

2 41

 

R W N   
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Chapter 4 Energy and Power 

4.1 Work  

Work is done whenever a force makes something move. It is calculated like 

this: 

Work done=force × distance moved in direction of force. 

In symbol:  W FS

Work is a scalar quantity. In SI, its unit is joule, denoted by J. 1 J equals the 

work done by a force of 1 N when it moves a body through 1 m in its 

direction. 
1 1 1 1J N m N m     

1.1 Force and displacement 

Imagine an object is acted by a constant force, F, at an angle   to the 

direction in which the object moves, and the object moves to a distance S 

(Fig. 4.1). 

 
The force has a component cosF   in the direction of motion of the object 

and a component sinF   at right angles to the direction of motion. So the 

work done on the object, W, is equal to the component of force in the 

direction of motion × the distance moved. 

cosW Fs   

Note: if  (which means that the force is perpendicular to the direction 

of motion) then, because

90  

cos90 0 , the work done is zero. 

 

1.2 Force—distance graphs 

If a constant force F acts on an object and makes it move a distance s in the 

direction of the force, the work done on the objectW Fs . Fig. 4.2 shows a 

graph of force against distance in this situation. The area under the line is a 

rectangle of height representing the force and of base length representing the 

distance moved. Therefore the area under the line represents the work done. 
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Fig. 4.2 force distance graph  
So the area under the line of a force—distance graph represents the total 

work done. 

4.2 Power 

The ratio of the work to the time taken to do the work is called power. Power 

is denoted by P, then 
W

P
t

  

The SI unit for power is watt, denoted by W. 1 W = 1 J/s. A watt is a small 

unit. In technology we usually use kilowatt (kW) as the unit of power. 1 kW 

= 1000W. 

Note: the process of doing work is the process of energy transforming from 

one state to another. The work done is equal to the energy transformed. 

Hence, work is the measure of the energy transformed. 

Thus 

Power can be calculated: 
energy transferred

power
time taken

 or work done
power

timetaken
  

 

2.1 Power and velocity 

Power can be calculated from force and velocity. If the force and the 

displacement are in the same direction, then W Fs 。 Substitute it into the 

equation of power, we get W Fs
P

t t
  . As s

v
t
 , then 

P F v  

That means that the work done by force F equals the product of force F and 

the velocity  of the motion of the body. When the body is in variable 

motion,  in the above equation denotes the average velocity during time t, 

and P denotes the average power of force F during time t. if the time t is 

v

v
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small enough,  in the above equation means the instantaneous velocity at 

a moment and P is the instantaneous power at that moment. 

v

4.3 energy 

Things have energy if they can do work. The SI unit of energy is also the 

joule (J). 

3.1 Kinetic energy 

This is energy which something has because it is moving. 

3.2 Potential energy 

This is energy which something has because of its position, shape, or state. A 

stone about to fall from a cliff has gravitational potential energy. A stretched 

spring has elastic potential energy. Foods and fuels have chemical potential 

energy. Charge from a battery has electrical potential energy. Particles from 

the nucleus of an atom have nuclear potential energy. 

3.3 Internal energy 

Matter is made up of tiny particles which are in random motion they have 

kinetic energy because of their motion, and potential energy because of the 

forces of attraction trying to pull them together. An object’s internal energy is 

the total kinetic and potential energy of its particles. 

3.4 Heat (thermal energy) 

This is the energy transferred from one object to another because of a 

temperature difference. Usually, when heat is transferred, one object loses 

internal energy, and the other gains it. 

 

3.5 Radiant energy 

This is often in the form of waves. Sound and light are examples. 

3.6 Mechanical energy 

(i) Kinetic energy and gravitational and elastic potential energy are 

sometimes known as mechanical energy. They are the forms of energy most 

associated with machines and motion. 

 (ii) Gravitational potential energy is sometimes just called potential energy 

(or PE), even though there are other forms of potential energy as described 

above. 

3.7 Energy changes 

According to the law of conservation of energy: 
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   Energy cannot be made or destroyed, but it can be changed from one 

form to another. 

Whenever there is an energy change, work is done—although this may not 

always be obvious. For example, when a car’s brakes are applied, the car 

slows down and the brakes heat up, so kinetic energy is being changed into 

internal energy. Work is done because tiny forces are making the particles of 

the brake materials move faster. 

And an energy change is sometimes called an energy transformation. 

Whenever it takes place: 

Work done = energy transformed 

So, for each 1J of energy transformed, 1J of work is done. 

4.4 Efficiency 

Energy changers such as motors waste some of the energy supplied to them. 

Their efficiency is calculated like this: 
useful energy output useful power output

Efficiency
energy input power input

   

For example, if an electric motor’s power input is 100W, and its useful power 

output is 80W, then its efficiency is 0.8. This can be expressed as 80%. 

 

4.5 Kinetic energy  Theorem of kinetic energy 

In Fig. 4.3, an object of mass m is accelerated from velocity u to v by a 

resultant force F. while gaining this velocity, its displacement is s and its 

acceleration is a. 

 
From the law of conservation of energy, the KE gained by the object is equal 
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to the work done on it, Fs. 

By the equation , rewritten as 2 2 2v u as  2 21 1

2 2
as v u   

So 2 21 1

2 2
mas mv mu   

But    (Becausemas Fs F ma ) 

So 2 21 1

2 2
Fs mv mu   

Evidently the work done by force F equals the change of the physical 

quantity 21

2
mv . In physics the quantity 21

2
mv  is used to represent the kinetic 

energy of a body. Kinetic energy is denoted by , i.e.  kE

                     21

2kE m v

1

 

Kinetic energy is a scalar. It has the same unit as work, in SI it is joule (J) too. 

  2 21 / 1kg m s N m J   

For example, if a 2kg tone has a speed of 110ms , its 21
2 10 100

2
KE J     

 

Theorem of kinetic energy: the work done by the resultant force on a body 

is equal to the change in kinetic energy of the body. This conclusion is called 

the theorem of kinetic energy. 

The equation can be written as  

2 1k kW E E   

Where  represents the final kinetic energy 2kE 21

2
mv  and  represents the 

initial kinetic energy 

1kE

21

2
mu . 

4.6 Gravitational potential energy 

Suppose a body of mass m falls from point A of height h1 to point B of height 

h2 (Fig. 4.4). The work done by the gravitational force is  

1 2GW mg h mgh mgh     

We see that  equals the change of . In physics  represents the 

gravitational potential energy of a body. If gravitational potential energy is 

denoted by , we have 

GW

pE

mgh mgh

                           pE mgh  
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The gravitational potential energy of a body equals the product of its weight 

and its height. Gravitational potential energy is a scalar. It has the same unit 

as work and in SI it is joule. 21 1kg m s m N m J 1       

We can rewrite the equation 1GW mgh mgh2   as 1G P PW E E 2  , where 

, representing the gravitational potential energy at the initial 

position and 

1PE mg 1h

22PE mgh , representing the gravitational potential energy at the 

final position. 

4.7 The law of conservation of mechanical energy  

When only the gravitational force does work, the kinetic and the 

gravitational potential energy can be converted from one to another and 

the total mechanical energy remains conserved. 

This conclusion is called the law of conservation of mechanical energy. 

The equation can be written as: 

2 2 1 1k p k pE E E E    

 

4.8  17 Worked examples 

1. On a fairground ride, the track descends by a vertical drop of 55m over a 

distance of 120 along the track. A train of mass 2500kg on the track reaches a 

speed of  at the bottom of the descent after being at rest at the top. 130ms

Calculate (a) the loss of potential energy of the train, (b) its gain of kinetic 

energy, (c) the average frictional force on the train during the descent. 

Solution: 

(a) Loss of potential energy,  62500 9.8 55 1.35 10PE mg h J      

(b) Its gain of Kinetic energy, 2 21
0.5 2500 30 1.13 10

2
KE mv J      6  

(c) Work done overcome friction = 21

2
mg h mv   
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6 61.35 10 1.13 10 0.22 106 J       

Because the work done to overcome friction = friction force × distance 

moved along track. 

tan

work done to overcome friction
the frictional force

dis ce moved
  

               
60.22 10

1830
120

N


   

 

2. An aircraft powered by engines that exert a force of 40 kN is in level flight 

at a constant velocity of 180ms . Calculate the output power of the engine at 

this speed. 

Solution: 
640000 80 3.2 10power force velocity W       

 

3. A 60W electric motor raises a weight of 20N through a height of 2.5m in 

8.0s. Calculate: 

a. the electrical energy supplied to the motor. 

b. the useful energy transferred by the motor, 

c. the efficiency of the motor. 

Solution: 

a.  

Electrical energy transferred = power of the electric motor × time taken 

So the electrical energy supplied to the motor, 60 8 480E Pt J     

a. The useful energy transferred by the motor is the potential energy of the 

weight gained. 
    20 2.5 50PE mgh J   

c. useful energy output useful power output
Efficiency

energy input power input
   

            50
100% 10.4%

480

J

J
    

 

4. A child tows a toy by means of a string as shown in Fig. 4.1. 
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Fig. 4.1  
The tension in the string is 1.5N and the string makes an angle of  with 

the horizontal. Calculate the work done in moving the toy horizontally 

through a distance of 265 cm. 

25

Solution: 

Work done = horizontal component of tension × distance moved 

         
265

1.5cos 25 3.6
100

J  
 

 

5. A skydiver of mass 70 kg, jumps from a stationary balloon and reaches a 

speed of 45ms-1 after falling a distance of 150 m. 

(a) Calculate the skydiver’s 

(i) Loss of gravitational potential energy, 

 Strategy: loss of gravitational potential energy, pE mgh 

570 9.8 150 1.03 10pE mgh J      So  

(ii) Gain in kinetic energy. 

Strategy: the speed gain is 45ms-1, so the kinetic energy gain, 21

2kE mv   

So 2 2 41 1
70 45 7.09 10

2 2kE mv J      

p kW E E

 

(b) The difference between the loss of gravitational potential energy and the 

gain in kinetic energy is equal to the work done against air resistance. Use 

this fact to calculate 

(i) The work done against air resistance, 

 Answers: the work done,   

5 4 51.03 10 7.09 10 0.321 10p kW E E J        

50.321 10 150W J F   

214F N

 

 So  

(ii) The average force due to air resistance acting on the skydiver. 

 Strategy: Work done = force × distance moved in direction of force. 

 So  
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6. A packing case is being lifted vertically at a constant speed by a cable 

attached to a crane. The packing case has a mass of 640 kg. 

(a) With reference to one of Newton’s laws of motion, explain why the 

tension, T, in the cable must be equal to the weight of the packing case. 

You may be awarded marks for the quality of written communication in your 

answer. 

Answers: because the packing case is being lifted vertically at a constant 

speed, by the Newton’s first law, the resultant force on the case must be zero, 

so the tension, T, must be equal to the weight of the case. 

(b) The packing case is lifted through a vertical height of 8.0 m in 4.5 s. 

Calculate 

(i) The work done on the packing case, 

 Strategy: Work done = force × distance moved in direction of force. 

In symbol:  W FS

640 9.8 6272T mg N And the tension on the packing case,     
46272 8 5.02 10W TS J    So  

(ii) The power output of the crane in this situation. 

   Strategy: energy transferred
power

time taken
  or work done

power
timetaken

  

   So 
4

45.02 10
1.1 10

4.5

W
P W

t


     

 

7. A fairground ride ends with the car moving up a ramp at a slope of 30° to 

the horizontal as shown in Fig. 7.1. 

Fig. 7.1  
(a) The car and its passengers have a total weight of 7.2×103 N. Show that the 

component of the weight parallel to the ramp is 3.6×103 N. 

 Strategy: from the figure, the component of the weight parallel to the ramp, 
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0 3 3sin 30 7.2 10 0.5 3.6 10pW W N       

(b) Calculate the deceleration of the car assuming the only force causing the 

car to decelerate is that calculated in part (a). 

 Strategy: mass of the car, 
37.2 10

734.7
9.8

W
m kg

g


  

33.6 10pW N 

, and the only force 

cause the car decelerating is  

So the deceleration of the car, 
3

23.6 10
4.9

734.7
pW

a ms
m


  

118u ms

 

(c) The car enters at the bottom of the ramp at 18ms-1. Calculate the 

minimum length of the ramp for the car to stop before it reaches the end. The 

length of the car should be neglected. 
 10v ms, final speed, , Strategy: initial speed, 

So 
2 2

2 2 2
2

v u
v u as s

a


     

So the minimum length of the ramp, 
2 2 20 18

33.1
2 2 ( 4.9)

v u
L m

a

 
  

 
24.9a ms

 

, because the car is decelerating. NOTE:  

(d) Explain why the stopping distance is, in practice, shorter than the value 

calculated in part (c). 

   Because in the process, the friction force must be considered, so the 

resultant force increases, the deceleration increases, and also some of the 

energy change to heat energy, so the stopping distance is shorter than the 

value calculated in part (c). 

 

8. Figure 8.1 shows apparatus that can be used to investigate energy changes. 
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The trolley and the mass are joined by an inextensible string. In an 

experiment to investigate energy changes, the trolley is initially held at rest, 

and is then released so that the mass falls vertically to the ground. 

You may be awarded marks for the quality of written communication in your 

answer. 

(a) (i) State the energy changes of the falling mass. 

   Answers: the gravitational potential energy change to kinetic energy. 

(ii) Describe the energy changes that take place in this system. 

   Answers: The gravitational potential energy of the mass change to the 

kinetic energy of the trolley and the mass; and at the same time some of the 

energy change to thermal energy due to friction. 

(b) State what measurements would need to be made to investigate the 

conservation of energy? 

Strategy: the gravitational potential energy is equal to , and the kinetic 

energy is equal to

mgh

21

2
mv

mgh

, 

So you need to know the masses of the trolley (M) and the falling mass (m), 

and also the height (h) the falling mass falls, and the speed (v) of the trolley 

and the falling mass. 

(c) Describe how the measurements in part (b) would be used to investigate 

the conservation of energy. 

Strategy:  

(i) Determine the loss potential energy ( ) of the falling mass when it falls 

from rest to the ground. 
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(ii) Calculate the speed of the trolley and the falling mass: v 

(iii) Calculate the Kinetic energy of the trolley and the falling mass, 

2 2 21 1 1
( )

2 2 2kE Mv mv M m v   
 

(iv) Compare the loss of potential energy with the gain of the kinetic energy. 

 

9. Figure 9.1 shows a skateboarder descending a ramp. 

Fig. 9.1  
The skateboarder starts from rest at the top of the ramp at A and leaves the 

ramp at B horizontally with a velocity v. 

(a) State the energy changes that take place as the skateboarder moves from A 

to B. 

Solution: 

The gravitational potential energy changes to kinetic energy and heat energy. 

 

(b) In going from A to B the skateboarder’s centre of gravity descends a 

vertical height of 1.5 m. Calculate the horizontal velocity, v, stating an 

assumption that you make. 

Solution: 

Assuming the energy converts to thermal energy is negligible. Thus, loss of 

potential energy = gain in kinetic energy. 

Therefore, 

21

2 hmv mg h  , gives 

2 2 9.81 1.5 5.42 /hv g h m s       
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(c) Explain why the acceleration decreases as the skateboarder moves from A 

to B. 

Solution: 

There is air resistance which increases with speed, thus when the 

skateboarder moves down the slope the resultant force decreases, causing the 

decreasing acceleration. 

(d) After leaving the ramp at B the skateboarder lands on the ground at C 

0.42 s later. 

Calculate for the skateboarder 

(i) The horizontal distance travelled between B and C, 

Solution: 

Horizontally, there is no force acting on the skateboarder. Thus, the 

skateboarder moves with constant speed horizontally ( 5.42 /hv m s ). 

Therefore, the distance traveled is given by 
5.42 0.42 2.28hs v t m   

9.81 0.42 4.12 /vv at gt m s

 

(ii) The vertical component of the velocity immediately before impact at C, 

Solution: 

Vertically, the acceleration is a = g = 9.81 m/s2. 

The vertical component of the velocity      

(iii) The magnitude of the resultant velocity immediately before impact at C. 

Solution: 

Magnitude of the resultant velocity 2 2 2 25.42 4.12 6.4 /h vv v v m s      

 

10. Fig. 10.1 shows a ship being pulled along by cables attached to two tugs. 

Fig. 10.1  
(a) The tension in each cable is 6500 N and the ship is moving at a constant 
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speed of . When θ is equal to 35°, calculate 1.5 /m s

(i) The resultant force exerted on the ship by the cables, 

Solution: 

The resultant force exerted on the ship by the cables is given by 

6500cos 6500cos 2 6500cos35 10649F N     

1.5 1 60 90s vt m    

510649 90 9.58 10W F s J     

 

(ii) The work done by the tension in the cables in one minute. 

Solution: 

In one minute, the distance traveled is given by 

 

The worked done is  

 

(b) Explain why the work done on the ship does not result in a gain in its 

kinetic energy. 

Solution: 

There is frictional force on the ship, the total work done on this force. Thus it 

does not result in a gain in its kinetic energy. 

(c) State and explain the initial effect on the ship if the angle θ is reduced 

while the tension in the cables remains constant. 

You may be awarded additional marks to those shown in brackets for the 

quality of written communication in your answer. 

Solution: 

The resultant force on the ship by the cables increases Thus, the ship initially 

accelerates. And the ship eventually reaches new higher constant speed. 

 

11. An athlete performs an experiment to measure the power developed as he 

runs up a flight of stairs. The athlete makes the assumption that the work 

done in climbing the stairs is equal to the gain in potential energy. 

(i) State the measurements that would be needed to find the power developed 

by the athlete. 

Solution: 

(1) Find the students’ weight 

(2) Measure the vertical height of stairs. 

(3) Time taken for the student to run up the stairs. 

(ii) Show how the measurements would be used to calculate the power 
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developed as the athlete runs up the stairs. 

Solution: 

Using , we can get the work done by the athlete: pE mgh pW E mgh  . 

Then the power is given by 
W

P
t



pE

 

(ⅲ) Explain why the power calculated by the athlete is likely to be less than 

the power actually developed. 

Solution: 

(1) Not all the work done goes to . 

(2) Do not considering the kinetic energy. 

 

12. A pile driver is used to drive cylindrical poles, called piles, into the 

ground so that they form the foundations of a building. Fig. 12.1 shows a 

possible arrangement for a pile driver. The hammer is held above the pile and 

then released so that it falls freely under gravity, until it strikes the top of the 

pile. 

Fig. 12.1  
(a) State the main energy changes that take place as the hammer is falling. 

Solution: 

The hammer falls freely under gravity, which means ignoring the air 

resistance. Thus the main energy changes: the potential energy converts to 

kinetic energy. 
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(b) The hammer has a mass of 250 kg and falls 4.5 m before striking the pile. 

After impact the hammer and pile move downwards together. 

Calculate 

(b) (i) the speed of the hammer just before impact, 

(b) (ii) the momentum of the hammer just before the impact, 

(b) (iii) the speed of the hammer and pile immediately after impact if the 

mass of the pile is 2000 kg. 

Solutions: 

(i) Let the speed of the hammer just before impact v. 

  When the hammer falls 4.5 m, loss of potential energy is given by 
 (250 ) (9.81 / ) 4.5 11036PE mgH kg N kg m J    

And the gain in kinetic energy is equal to the loss of potential, thus  

2 11036J

9.4 /v m s

(250 ) 9.4 / 2350 /

1

2
mv PE   

 

(ii) Let the mass of the hammer m = 250 kg. 

p mv kg m s kg m s    

2350 /

 

(iii) Let the speed of the hammer and the pile immediately after impact V, the 

total mass of hammer and the pile is M. by the Principle of conservation of 

linear momentum: 

MV mv kg m s    

2350
1.0 /

(2000 250)

/
V m s

kg

kg m s
 




 

(c) After an impact the hammer and the pile move so that the pile sinks into 

the ground to a depth of 0.25 m. 

Calculate 

(c) (i) the loss of kinetic energy of the hammer and pile, 

(c) (ii) the average frictional force the ground exerts on the pile while 

bringing it to rest. 

Solution: 

(i) The loss of kinetic energy is given by  

  2 2 21 1 1
0 (2000 250 ) 1 1125

2 2 2kE MV MV kg kg J          

(ii) The work done by the average frictional force is equal to the loss of the 
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kinetic energy. Thus  

1125fs J  

1125 4500
0.25

Jf N
m

   

(d) The process is repeated several times and each time the hammer is raised 

4.5 m above the pile. Suggest why the extra depth of penetration is likely to 

decrease with each impact. 

Solution: 

The resistive force from the ground will increase as the pile gets deeper in the 

ground. 

 

13. A cyclist pedals downhill on a road, as shown in Fig. 13. 1, from rest at 

the top of the hill and reaches a horizontal section of the road at a speed of 16 

m s-1. The total mass of the cyclist and the cycle is 68 kg. 

 
(a) (i) Calculate the total kinetic energy of the cyclist and the cycle on 

reaching the horizontal section of the road. 

Solution: 

The total kinetic energy is given by 

2 21 1
68 16 8704

2 2kE mv J    

68 9.8 12 7997p

 

(a) (ii) The height difference between the top of the hill and the horizontal 

section of road is 12 m. 

Calculate the loss of gravitational potential energy of the cyclist and the 

cycle. 

Solution: 

The loss of gravitational potential energy is given by 
 E mg h J      

(a) (iii) The work done by the cyclist when pedalling downhill is 2400 J. 
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Account for the difference between the loss of gravitational potential energy 

and the gain of kinetic energy of the cyclist and the cycle. 

Solution: 

Gain of kinetic energy is greater than the loss of potential energy, because the 

cyclist does wore, and some of the energy is wasted due to air resistance. 

Thus  

Gain of kinetic energy = loss of potential energy + word done – energy ‘lost’ 

Therefore, energy wasted = 7997 + 2400 – 8704 = 1693J 

(b) The cyclist stops pedalling on reaching the horizontal section of the road 

and slows to a standstill 160 m further along this section of the road. Assume 

the deceleration is uniform. 

(b) (i) calculate the time taken by the cyclist to travel this distance. 

Solution: 

On the horizontal section of the road, the initial velocity , final 

velocity v = 0 m/s, distance traveled s = 160 m. thus  

16 /u m s

2 2 2v u as  , and v u
a

t


 , therefore 

2 0 16
0 16 2 160

t


   

F ma

, gives t= 20 s 

(b) (ii) Calculate the average horizontal force on the cyclist and the cycle 

during this time. 

Solution: 

By Newton’s second law, , and 20 16
0.8 /

20

v u
a m s

t

 
   

68 ( 0.8) 54.4F ma N     

 

Therefore  

 

14. It has been predicted that in the future large offshore wind turbines may 

have a power output ten times that of the largest ones currently in use. These 

turbines could have a blade length of 100 m or more. A turbine such as this is 

shown in Fig. 14.1. 
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(a) At a wind speed of 11ms-1 the volume of air passing through the blades 

each second is 3.5×105m3. 

(a) (i) Show that the mass of air that would pass through the blades each 

second is about 4×105 kg. 

The density of air is 1.2 kg m-3 

Solution; 
5 51.2 3.5 10 4 10m V kg       

(a) (ii) Calculate the kinetic energy of the air that would enter the turbine 

each second. 

Solution: in one second 

The kinetic energy is given by 

2 5 2 71 1
4 10 11 2.42 10

2 2kE mv J        

(a) (iii) It has been predicted that the turbine would produce an electrical 

power output of 10 MW in these wind conditions. Calculate the percentage 

efficiency of the turbine in converting this kinetic energy into electrical 

energy. 

Solution; 

The efficiency is calculated like this: 
useful energy output useful power output

Efficiency
energy input power input

   

Thus 
6

7

(10 10 ) 1
100% 41.3%

2.42 10

useful energy output W s
Efficiency

energy input J

 
   


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(b) State one advantage and one disadvantage of wind power in comparison 

to fossil fuel. 

Solution: 

Advantages: the wind causes no air pollution 

Disadvantages: it can cause visual pollution (noise). Or there may be danger 

to birds. 

 

15. Fig. 15.1 shows a gymnast trampolining. 

 
In travelling from her lowest position at A to her highest position at B, her 

centre of mass rises 4.2 m vertically. Her mass is 55 kg. 

(a) Calculate the increase in her gravitational potential energy when she 

ascends from position A to position B. 

Solution: 

The gravitational potential energy is given by 
 55 9.81 4.2 2266pE mg h J     

(b) The gymnast descends from position B and regains contact with the 

trampoline when it is in its unstretched position. At this position, her centre 

of mass is 3.2 m below its position at B. 

(b) (i) Calculate her kinetic energy at the instant she touches the unstretched 

trampoline. 

Solution: 

In this process, her potential energy change into kinetic energy, thus 

21

2p kE mg h E mv     

Therefore, 
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55 9.81 3.2 1727k pE E mg h J        

(b) (ii) Calculate her vertical speed at the same instant. 

Solution: 

21
1727

2kE mv J   

Gives  

2 1727
7.92 /

55
v m s


   

(c) Draw an arrow on Fig. 15.2 to show the force exerted on the gymnast by 

the trampoline when she is in position A. 

Solution: 

Fig. 15.2  
(d) As she accelerates upwards again from position A, she is in contact with 

the trampoline for a further 0.26 s. Calculate the average acceleration she 

would experience while she is in contact with the trampoline, if she is to 

reach the same height as before. 

Solution: 

Because she is to reach the same height as before, the energy is conserved. 

Thus, the initial velocity ; the final velocity0 /u m s 7.92 /v m s , upwards. 

Therefore, 

Acceleration, 27.92 0
30 /

0.26

v u
a m s

t

 
    

(e) On her next jump the gymnast decides to reach a height above position B. 

Describe and explain, in terms of energy and work, the transformations that 

occur as she ascends from her lowest position A until she reaches her new 

position above B. 
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The quality of your written communication will be assessed in this question. 

Solution: 

(i) The elastic potential energy is transformed to kinetic energy. 

(ii) The kinetic energy is transformed into gravitational potential energy. 

(iii) The gymnast must do work to increase height. 

 

16 (a) Define a vector quantity and give one example. 

Strategy and solution: 

Scalar: quantity has direction only. 

Examples of scalar: mass, temperatures, volume, work… 

Vector: quantity both has magnitude and direction  

Examples of vectors: force, acceleration, displacement, velocity, 

momentum… 

 

(b) Fig. 16.1 shows a force F at an angle of  to the horizontal direction. 030

030

F

Fh  
Fig. 16.1 

(i) The horizontal component of the force F is 7.0 N. Calculate the magnitude 

of the force F. 

Strategy and solution: 

Form Fig. 16.1, , thus, 0cos30 7.0hF F N 
0

7.0
8.10

cos30

N
F N   

 

(ii) The force F moves an object in the horizontal direction. In a time of 4.2 s, 

the object moves a horizontal distance of 5.0 m. calculate 

1 the work done by the force 

Strategy and solution: 

Force and displacement 

Imagine an object is acted by a constant force, F, at an angle   to the 

direction in which the object moves, and the object moves to a distance S 
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(Fig. 16.2). 

 
The force has a component cosF   in the direction of motion of the object 

and a component sinF   at right angles to the direction of motion. So the 

work done on the object, W, is equal to the component of force in the 

direction of motion × the distance moved. 

cosW Fs   

Note: if  (which means that the force is perpendicular to the direction 

of motion) then, because

90  

cos90 0 , the work done is zero. 

Therefore, 
0cos 8.10 5 cos30 35.1W Fs N m Nm      

 

2 the rate of work done by the force 

Strategy and solution: 

The rate of work done by the force is Power. Thus 
35

8.33
4.2

work done J
Power W

time taken s
    

 

(c) Fig. 16.3 shows the forces acting on a stage light of weight 120 N held 

stationary by two separate cables. 

Fig. 16.3  
The angle between the two cables is . One cable has tension 70 N and the 090
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other has tension T. 

(i) State the magnitude and the direction of the resultant of the tensions in the 

two cables. 

Strategy and solution: 

The stage light is in stationary, thus the resultant force of 70N, T and 120N is 

zero. Therefore the resultant force of T and 70 N is equal but opposite to the 

120N. 

Therefore, the direction of the two cables is opposite to the direction of 

weight. 

 

(ii) Sketch a labelled vector triangle for the forces acting on the stage light. 

Hence, determine the magnitude of the tension T. 

Strategy and solution: 

 

Thus, 
2 270 120T   2  

T = 97.5N 

 

17 (a) State the principle of conservation of energy. 

Strategy and solution: 

Energy can neither be created nor destroyed (but it can be transformed from 

one form to another). The total energy of a closed system remains constant. 

 

(b) Fig. 17.1 shows a glider on a horizontal frictionless track. 
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Fig. 17.1 

The mass of the glider is 0.25 kg. One end of a string is fixed to the glider 

and the other end to a 0.10 kg mass. The 0.10 kg mass is held stationary at a 

height of 0.60m from the ground. The pulley is more than 0.60m away from 

the front of the glider. When the 0.10 kg mass is released, the glider has a 

constant acceleration of 22.8ms  towards the pulley. The 0.10 kg mass 

instantaneously comes to rest when it hits the ground. 

(i) Calculate the loss in potential energy of the 0.10 kg mass as it falls 

through the distance of 0.60m 

Strategy and solution: 
0.10 9.81 0.6 0.59pE mg h J       

 

(ii) The glider starts from rest. Show that the velocity of the glider after 

travelling a distance of 0.60m is about 11.8ms . 

Strategy and solution: 

The glider has a constant acceleration of 22.8ms  towards the pulley, thus, 

the 0.10kg mass also has a constant acceleration of 22.8ms . 

Therefore, the final velocity of the mass after travelling a distance of 0.60m 

is given by 
12 2 2.8 0.6 1.83v as ms     2 2 2 2v u as as   (  and initial velocity is 

zero) 

 

(iii) Calculate the kinetic energy of the glider at this velocity of . 11.8ms

Strategy and solution: 

http://www.mppe.org.uk

Copyright  © mppe.org.uk and its license. All Rights Reserved 


	combine-Edexcel-AS-Unit-1-Physics-on-the-go-Mechanics-and-Materials.pdf
	AS-Unit-1-Physics-on-the-go
	1 Mechanics
	Chapter 1 Scalars and Vectors
	1.1 Definition of scalars and vectors
	1.2 Addition of vectors:
	1.3 Resolving a vector into two perpendicular components
	1.4  10 Worked examples

	Chapter 2 Rectilinear motion
	2.1 Displacement and velocity
	2.2 Acceleration
	2.3 Equations for uniform acceleration
	2.4 Displacement—time graphs with uniform acceleration
	2.5 Velocity—time graphs with uniform acceleration
	2-6 Free-fall motion
	2.7 Projectile motion
	2.8  20 Worked examples

	Chapter 3 Forces and Newton’s laws of motion
	3.1 Force definition
	3.2 Weight and g
	3.3 Newton’s first law of motion
	3.4 Newton’s second law
	3.5 Newton’s third law of motion
	3.6 Balanced forces
	3.7 Centre of gravity and Determination of Centre of Gravity (c.g.) of irregular lamina using the plumb line method
	3.8  11 Worked examples

	Chapter 4 Energy and Power
	4.1 Work 
	4.2 Power
	4.3 energy
	4.4 Efficiency
	4.5 Kinetic energy  Theorem of kinetic energy
	4.6 Gravitational potential energy
	4.7 The law of conservation of mechanical energy 
	4.8  17 Worked examples

	2 Materials
	Chapter 1 Fluids
	1.1 Density
	1.2 Pressure
	1.3 Hydrostatic Pressure
	1.4 Pascal Principle
	1.5 The Hydraulic Press
	1.6 Archimedes’s Principle
	1.7 Fluid flow: streamlines and the equation of continuity
	1.8 Bernoulli’s equation
	1.9 Pressure and velocity
	1.10 Applications of Bernoulli’s equation
	1.11 Viscosity and Poiseuille’s law
	1.12 Stokes’s law and terminal speed
	1.13 Turbulent flow
	1.14  16 Worked examples

	Chapter 2 Elasticity
	2.1 Deformation
	2.2 tensile stress and tensile strain
	2.3 Hooke’s law
	2.4 Young’s modulus
	2.5 Strain energy
	2.6 Materials stretching
	2.6.1 Stretching glass
	2.6.2 stretching a metal

	2.7  17 Worked examples


	Edexcel-AS-Unit-2-Physics-at-work-Waves-Electricity-and-Nature-of-light
	AS-Unit-2-Physics-at-work
	1 Waves
	Chapter 1 Mechanical waves
	1.1 Mechanical waves
	1.2 Types of waves
	1.3 Calculating wave speed
	1.4 Periodic wave features 
	1.5 Energy of a periodic wave
	1.6 The superposition principle
	1.7 standing waves

	1.7  11 Worked examples
	Chapter 2 Geometrical optics and Wave optics
	2.1 Reflection and refraction
	2.2 Total internal reflection
	2.3 Optical fibers
	2.4 Progressive waves & Wave features
	2.5 Polarization & Intensity
	2.6 Superposition and interference
	2.7 Diffraction

	2.8  41 Worked examples
	Chapter 3 Sound
	3.1 The speed of sound
	3.2 vibrating air columns
	3.3 Audible sound waves
	3.4 the Doppler Effect

	3.5  9 Worked examples
	2 DC electricity
	2-1 Charge, current and potential difference
	2-2 Resistance
	2-3 Ohm’s law and measuring resistance
	2-3-1 Graph of V against I and I against V for the ideal resistor

	2-4 Resistivity
	2.5 Circuit components symbols:
	2-5-1 I—V and V—I graphs for different conductors

	2-6 Circuits
	2-7 Potential divider
	2-8 Electromotive force and internal resistance

	2-9  38 Worked examples
	3 Nature of light
	3-1 Particles, antiparticles and photons
	3-2 The photoelectric effect
	3-3 Collisions of electrons with atoms
	3-4 Wave-particle duality

	3-5  46 Worked examples

	Edexcel-A2-Unit-4-Physics-on-the-Move-Further-mechanics-Electric-and-magnetic-field-and-Particle-physics
	A2-Unit-4-Physics-on-the-Move
	1 Further Mechanics
	Chapter 1 Momentum and impulse
	1-1 Momentum and impulse  impulse—momentum theorem
	1-2 Principle of conservation of linear momentum

	1-3  14 Worked examples
	Chapter 2 Circular motion
	2-1 Uniform circular motion
	2-2 Centripetal force and centripetal acceleration

	2-3  15 Worked examples
	2 Electric and Magnetic fields
	Chapter 1 Electric field
	1-1 Electric charge  Coulomb law
	1-2 Electric field   Electric field strength
	1-3 Electric field lines
	1-4 Electric potential difference  Electric potential
	1-5 Linking the electric field and the electric potential
	1-6 Capacitor  Capacitance
	1-7 The motions of charged particles in the uniform electric field 
	1-8 Comparison of electric and gravitational fields

	1-9  29 Worked examples
	Chapter 2 Magnetic fields
	2-1 Magnetic flux density
	2-1-1 Magnets and fields
	2-1-2 Magnetic fields from currents
	2-1-3 Magnetic force on moving charges and flux density (B)
	2-1-4 Magnetic force on a current

	2-2 Moving charges in a magnetic field
	2-2-1 Charged particles in circular orbits
	2-2-2 The cyclotron

	2-3 Electromagnetic induction phenomena
	2-4 Faraday law of electromagnetic induction and Lenz’s law
	2-5 Motional emf

	2-6  32 Worked examples
	3 Particle physics
	Chapter 1 Atomic nucleus
	1-1 Nucleus structure of atoms  Atomic nucleus
	1-2 Natural radiation phenomenon  Decay  half-life
	1-3 Nuclear reaction  Nuclear energy
	1-4 Fission
	1-5 Fusion of light nuclei

	1-6 19 Worked examples
	Chapter 2 Particles and Radiation
	2-1 Particles and antiparticles
	2-2 Particle interactions
	2-3 Properties of particles and antiparticles
	2-4 Quarks and Antiquarks

	2-5  45 Worked examples

	Edexcel-A2-Unit-5Physics-from-creation-to-collapse-Thermal-physics-nuclear-decay-oscillations
	A2-Unit-5-Physics-from-creation-to-collapse
	1 Thermal energy
	Chapter 1 Thermal Physics
	1-1 Temperature and state of matter
	1-2 Calorimetry
	1-3 Change of phase

	1-4  12 Worked examples
	Chapter 2 Gas laws and Kinetic theory
	2-1 Boyle’s law
	2-2 The law of Charles and Gay-Lussac
	2-3 The ideal gas law
	2-4 The kinetic theory of gases
	2-6 Internal energy of an ideal gas

	2 Nuclear decay
	Chapter 1 Radioactive decay
	1-1 Nucleus structure of atoms (Rutherford scattering)  Atomic nucleus
	1.1.1 The nucleus structure model of atom
	1.1.2 Constituents of the atom
	1.1.3 Nuclear Radius
	1.1.4 Atomic measurements

	1-2 Natural radiation phenomenon  Decay  half-life
	1.2.1 Natural radiation phenomenon
	1.2.2 Three types of radiation
	1.2.3 Half-life

	1-3 Nuclear reaction  Nuclear energy
	1.3.1 Nuclear reaction
	1.3.2 Mass defect & binding energy

	1-4 Fission
	1.4.1 Nuclear power station

	1-5 Fusion of light nuclei

	1-6  19 Worked examples
	3 Oscillations
	Chapter 1 Mechanical vibration
	1-1 Simple harmonic motion  Periodic motion
	1-2 Linking circular motion and SHM
	1-3 Graphical representations of SHM linking x, v, a and t
	1-4 Mass—spring system
	1-5 Simple pendulum
	1-6 The energy of SHM
	1-7 Free and damped oscillations
	1-8 Forced oscillations and resonance

	1-9  41 Worked examples
	4 Gravitation
	4-1 Newton’s law
	2-3 Gravitational potential
	4-4 Orbits of planets and satellites
	4-4-1 An orbit equation


	4-5  36 Worked examples




