Copyright © mppe.org.uk and its license. All Rights Reserved **NOTICE TO CUSTOMER:** The sale of this product is intended for use of the original purchaser only and for use only on a single computer system. Duplicating, selling, or otherwise distributing this product is a violation of the law; your license of the product will be terminated at any moment if you are selling or distributing the products. No parts of this book may be reproduced, stored in a retrieval system, of transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. ## mock papers 1 | | $\frac{2x^4 - 3x^2 + x + 1}{(x^2 - 1)} \equiv (ax^2 + bx + c) + \frac{dx + e}{(x^2 - 1)},$ | | |--------------------|--|-----| | find the values of | the constants a , b , c , d and e . | (4) | uestion 1 continued | | |---------------------|-------|
Q | | A curve C has equation | | |---|-----| | $y = e^{2x} \tan x$, $x \neq (2n+1)\frac{\pi}{2}$. | | | (a) Show that the turning points on C occur where $\tan x = -1$. | | | | (6) | | (b) Find an equation of the tangent to C at the point where $x = 0$. | | | | (2) | uestion 2 continued | | |---------------------|--| 3. | | $f(x) = \ln(x+2) - x + 1, x > -2, x \in \mathbb{R}$. | | |----|-----|--|-----| | | (a) | Show that there is a root of $f(x) = 0$ in the interval $2 < x < 3$. | | | | | | (2) | | | (b) | Use the iterative formula | | | | | $x_{n+1} = \ln(x_n + 2) + 1, \ x_0 = 2.5$ | | | | | to calculate the values of x_1, x_2 and x_3 giving your answers to 5 decimal places. | | | | | to ententiate the various of x_1, x_2 and x_3 giving your answers to 3 decimal places. | (3) | | | (c) | Show that $x = 2.505$ is a root of $f(x) = 0$ correct to 3 decimal places. | | | | (-) | (*) | (2) | nestion 3 continued | | |---------------------|--| 4. Figure 1 Figure 1 shows a sketch of the curve with equation y = f(x). The curve passes through the origin O and the points A(5, 4) and B(-5, -4). In separate diagrams, sketch the graph with equation (a) $$y = |\mathbf{f}(x)|$$, (3) (b) $$y = f(|x|)$$, (3) (c) $$y = 2f(x+1)$$. (4) On each sketch, show the coordinates of the points corresponding to A and B. | Question 4 continued | | |----------------------|--| Question 4 continued | | |----------------------|--| Question 4 continued | | |----------------------|----| Q4 | | (Total 10 marks) | | | (10tal 10 marks) | | | . The radioactive decay of a substance is given by | | |--|-----| | $R = 1000e^{-ct}, \qquad t \geqslant 0.$ | | | where R is the number of atoms at time t years and c is a positive constant. | | | (a) Find the number of atoms when the substance started to decay. | (1) | | It takes 5730 years for half of the substance to decay. | | | (b) Find the value of c to 3 significant figures. | (4) | | (c) Calculate the number of atoms that will be left when $t = 22 920$. | (2) | | (d) In the space provided on page 13, sketch the graph of R against t . | (2) | Q5 | |--|----| | 6. (a) Use the double angle formulae and the identity | | |---|-----| | $\cos(A+B) \equiv \cos A \cos B - \sin A \sin B$ | | | to obtain an expression for $\cos 3x$ in terms of powers of $\cos x$ only. | | | (b) (i) Prove that | | | (b) (i) Prove that $\frac{\cos x}{1+\sin x} + \frac{1+\sin x}{\cos x} \equiv 2\sec x, \qquad x \neq (2n+1)\frac{\pi}{2}.$ | | | $1+\sin x \cos x$ | (4) | | (ii) Hence find, for $0 < x < 2\pi$, all the solutions of | | | $\frac{\cos x}{1+\sin x} + \frac{1+\sin x}{\cos x} = 4.$ | | | $1+\sin x \cos x$ | (3) | \top | |---------------------|--------| | | | | uestion 6 continued | Question 6 continued | | |----------------------|--| | Question o constitue | uestion 6 continued | | |---------------------|--| 7. A curve C has equation | | |--|-----| | $y = 3\sin 2x + 4\cos 2x, \ -\pi \leqslant x \leqslant \pi.$ | | | The point $A(0, 4)$ lies on C . | | | (a) Find an equation of the normal to the curve C at A. | | | | (5) | | (b) Express y in the form $R \sin(2x + \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$. | | | Give the value of α to 3 significant figures. | | | | (4) | | (c) Find the coordinates of the points of intersection of the curve <i>C</i> with the <i>x</i> -axis. Give your answers to 2 decimal places. | | | Olive your when the z dooming places. | (4) | Question 7 continued | | |----------------------|--| Question 7 continued | | |--|--| | Constitution of the consti | · · | | | | | | | | | | | | | | | | | | uestion 7 continued | | |---------------------|--| 8. The functions f and g a | are defined by | | |-----------------------------------|---|------------------------------| | | $f: x \mapsto 1 - 2x^3, \ x \in \mathbb{R}$ | | | | $g: x \mapsto \frac{3}{x} - 4, \ x > 0, \ x \in \mathbb{R}$ | | | (a) Find the inverse fu | | | | | | (2) | | (b) Show that the com | | | | | $gf: x \mapsto \frac{8x^3 - 1}{1 - 2x^3}.$ | | | | | (4) | | (c) Solve $gf(x) = 0$. | | | | | | (2) | | (d) Use calculus to fir | nd the coordinates of the stationary point on th | e graph of $y = gf(x)$. (5) | | | | , | Question 8 continued | | |----------------------|-----| | Question o continued | 1 | | | 1 | 1 | | | | | | 1 | | | | | | 1 | | | 1 | | | 1 | | | 1 | | | 1 | | | 1 | | | | | | | | | | | | 1 | l . | | uestion 8 continued | | |---------------------|-----------| (Total | 13 marks) | | | | | TOTAL FOR PAPER: 75 | MARKS | | END | | ## mock papers 2 | | $y = 4e^{2x+1}.$ | | |---|---|--------| | | The <i>y</i> -coordinate of <i>P</i> is 8. | | | | (a) Find, in terms of ln 2, the <i>x</i> -coordinate of <i>P</i> . | | | | (a) Thid, in terms of in 2, the x-coordinate of T. | (2) | | | (b) Find the equation of the top cont to the course of the point D in the forms of the | | | | (b) Find the equation of the tangent to the curve at the point P in the form $y = a$ where a and b are exact constants to be found. | x + D, | | | | (4) | | | | | | | | | | | | | | - | _ | | | | _ | 2. | $f(x) = 5\cos x + 12\sin x$ | | |----|--|-----| | | Given that $f(x) = R\cos(x - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$, | | | | (a) find the value of R and the value of α to 3 decimal places. | (4) | | | (b) Hence solve the equation | | | | $5\cos x + 12\sin x = 6$ | | | | for $0 \leqslant x < 2\pi$. | (5) | | | (c) (i) Write down the maximum value of $5\cos x + 12\sin x$. | (1) | | | (ii) Find the smallest positive value of x for which this maximum value occurs. | (2) | 3. Figure 1 Figure 1 shows the graph of $y = f(x), x \in \mathbb{R}$. The graph consists of two line segments that meet at the point P. The graph cuts the y-axis at the point Q and the x-axis at the points (-3, 0) and R. Sketch, on separate diagrams, the graphs of (a) $$y = |f(x)|$$, (2) (b) $$y = f(-x)$$. (2) Given that f(x) = 2 - |x + 1|, (c) find the coordinates of the points P, Q and R, (3) (d) solve $$f(x) = \frac{1}{2}x$$. (5) | 4. The function f is defined by | | |---|-----| | $f: x \mapsto \frac{2(x-1)}{x^2 - 2x - 3} - \frac{1}{x - 3}, x > 3.$ | | | (a) Show that $f(x) = \frac{1}{x+1}$, $x > 3$. | (4) | | (b) Find the range of f. | (2) | | (c) Find $f^{-1}(x)$. State the domain of this inverse function. | (3) | | The function g is defined by | | | $g: x \mapsto 2x^2 - 3, x \in \mathbb{R}.$ | | | (d) Solve $fg(x) = \frac{1}{8}$. | (3) | l. | | 5. (a) Given that $\sin^2 \theta + \cos^2 \theta \equiv 1$, show that $1 + \cot^2 \theta \equiv \csc^2 \theta$. | | |---|-----| | | (2) | | | | | (b) Solve, for $0 \le \theta < 180^{\circ}$, the equation | | | $2 \cot^2 \theta - 9 \csc \theta = 3,$ | | | | | | giving your answers to 1 decimal place. | | | | (6) | 6. | (a) Differentiate with respect to x , | | | |----|---|-----|--| | | $(i) e^{3x}(\sin x + 2\cos x),$ | (2) | | | | 31 (5 2) | (3) | | | | (ii) $x^3 \ln (5x+2)$. | (3) | | | | Given that $y = \frac{3x^2 + 6x - 7}{(x+1)^2}$, $x \neq -1$, | | | | | (b) show that $\frac{dy}{dx} = \frac{20}{(x+1)^3}$. | (5) | | | | (c) Hence find $\frac{d^2y}{dx^2}$ and the real values of x for which $\frac{d^2y}{dx^2} = -\frac{15}{4}$. | | | | | dx^2 dx^2 4 | (3) | _ | | | |----|---|-----------------| | 7. | $f(x) = 3x^3 - 2x - 6$ | | | | (a) Show that $f(x) = 0$ has a root, α , between $x = 1.4$ and $x = 1.45$ | (2) | | | (b) Show that the equation $f(x) = 0$ can be written as | | | | $x = \sqrt{\left(\frac{2}{x} + \frac{2}{3}\right)}, x \neq 0.$ | | | | | (3) | | | (c) Starting with $x_0=1.43$, use the iteration | | | | $x_{n+1} = \sqrt{\left(\frac{2}{x_n} + \frac{2}{3}\right)}$ | | | | to calculate the values of x_1 , x_2 and x_3 , giving your answers to 4 decimal places. | (3) | | | (d) By choosing a suitable interval, show that $\alpha = 1.435$ is correct to 3 decimal pla | ces. (3) | nestion 7 continued | | |---------------------|------------------| (Total 11 marks) | ## mock papers 3 | cond cond cond cond cond cond cond cond | | |---|-----| | (a) Find the value of $\frac{dy}{dx}$ at the point where $x = 2$ on the curve with equation | | | | | | $y = x^2 \sqrt{(5x - 1)}.$ | | | | (6) | | ain In | | | (b) Differentiate $\frac{\sin 2x}{x^2}$ with respect to x. | | | x^2 | (4) | | | (4) | (a) Express $f(x)$ as | $f(x) = \frac{2x+2}{x^2 - 2x - 3} - \frac{x+1}{x-3}$ a single fraction in its simplest form. | (4) | |-----------------------|--|-----| | (b) Hence show that | at $f'(x) = \frac{2}{(x-3)^2}$ | (3) | (3) 3. Figure 1 Figure 1 shows the graph of y = f(x), 1 < x < 9. The points T(3, 5) and S(7, 2) are turning points on the graph. Sketch, on separate diagrams, the graphs of (a) $$y = 2f(x) - 4$$, (b) y = |f(x)|. (3) Indicate on each diagram the coordinates of any turning points on your sketch. | 4. | Find the equation of the tangent to the curve $x = \cos(2y + \pi)$ at $\left(0, \frac{\pi}{4}\right)$. | | |----|---|-----| | | Give your answer in the form $y = ax + b$, where a and b are constants to be found. | (6) | The functions f and g are defined by $f: x \mapsto 3x + \ln x, x > 0, x \in \mathbb{R}$ $g: x \mapsto e^{x^2}, x \in \mathbb{R}$ (a) Write down the range of g. (1) (b) Show that the composite function fg is defined by $fg: x \mapsto x^2 + 3e^{x^2}, x \in \mathbb{R}.$ (2) (c) Write down the range of fg. (1) (d) Solve the equation $\frac{d}{dx} \left[fg(x) \right] = x(xe^{x^2} + 2).$ (6) | | | |---|--|-----| | $g: x \mapsto e^{x^2}, x \in \mathbb{R}$ (a) Write down the range of g. (b) Show that the composite function fg is defined by $fg: x \mapsto x^2 + 3e^{x^2}, x \in \mathbb{R}.$ (c) Write down the range of fg. (d) Solve the equation $\frac{d}{dx} \Big[fg(x) \Big] = x(xe^{x^2} + 2).$ | 5. The functions f and g are defined by | | | (a) Write down the range of g.
(b) Show that the composite function fg is defined by $fg: x \mapsto x^2 + 3e^{x^2}, x \in \mathbb{R}.$ (c) Write down the range of fg.
(d) Solve the equation $\frac{d}{dx} [fg(x)] = x(xe^{x^2} + 2).$ | | | | (b) Show that the composite function fg is defined by $fg: x \mapsto x^2 + 3e^{x^2}, x \in \mathbb{R} \ .$ (c) Write down the range of fg. (d) Solve the equation $\frac{d}{dx} \left[fg(x) \right] = x(xe^{x^2} + 2)$. | $g: x \mapsto e^{x^2}, x \in \mathbb{R}$ | | | (b) Show that the composite function fg is defined by $fg: x \mapsto x^2 + 3e^{x^2}, x \in \mathbb{R} \ .$ (c) Write down the range of fg. (d) Solve the equation $\frac{d}{dx} \left[fg(x) \right] = x(xe^{x^2} + 2)$. | (a) Write down the range of g. | | | fg: $x \mapsto x^2 + 3e^{x^2}$, $x \in \mathbb{R}$. (2) (c) Write down the range of fg. (d) Solve the equation $\frac{d}{dx} \left[fg(x) \right] = x(xe^{x^2} + 2)$. | | (1) | | (c) Write down the range of fg. (d) Solve the equation $\frac{d}{dx} \left[fg(x) \right] = x(xe^{x^2} + 2)$. | (b) Show that the composite function fg is defined by | | | (c) Write down the range of fg. (d) Solve the equation $\frac{d}{dx} [fg(x)] = x(xe^{x^2} + 2)$. | $fg: x \mapsto x^2 + 3e^{x^2}, x \in \mathbb{R} .$ | | | (d) Solve the equation $\frac{d}{dx} \left[fg(x) \right] = x(xe^{x^2} + 2)$. | | (2) | | (d) Solve the equation $\frac{d}{dx} [fg(x)] = x(xe^{x^2} + 2)$. | (c) Write down the range of fg. | | | (d) Solve the equation $\frac{d}{dx} \left[fg(x) \right] = x(xe^{x^2} + 2)$. (6) | | (1) | | (6) | (d) Solve the equation $\frac{d}{dx} \left[fg(x) \right] = x(xe^{x^2} + 2)$. | | | | ti. | (6) | 6. (a) (i) By writing $3\theta = (2\theta + \theta)$, show that | | |---|-----| | sin $3\theta = 3 \sin \theta - 4 \sin^3 \theta$. | | | $\sin 3\theta - 3 \sin \theta - 4 \sin \theta$. | (4) | | π | | | (ii) Hence, or otherwise, for $0 < \theta < \frac{\pi}{3}$, solve | | | $8\sin^3\theta - 6\sin\theta + 1 = 0.$ | | | | | | Give your answers in terms of π . | (5) | | | (3) | | (b) Using $\sin(\theta - \alpha) = \sin\theta\cos\alpha - \cos\theta\sin\alpha$, or otherwise, show that | | | $\sin 15^\circ = \frac{1}{4}(\sqrt{6} - \sqrt{2}).$ | | | $\sin 13 = \frac{1}{4}(\sqrt{6} - \sqrt{2}).$ | (4) | | | (4) | $f(x) = 3xe^x - 1$ | | |---|-----------| | The curve with equation $y = f(x)$ has a turning point P . | | | (a) Find the exact coordinates of <i>P</i> . | | | | (5) | | The equation $f(x) = 0$ has a root between $x = 0.25$ and $x = 0.3$ | | | (b) Use the iterative formula | | | $x_{n+1} = \frac{1}{3} e^{-x_n}$ | | | with $x_0 = 0.25$ to find, to 4 decimal places, the values of x_1 , x_2 and x_3 . | (3) | | (c) By choosing a suitable interval, show that a root of $f(x) = 0$ is $x = 0.2576$ co | orrect to | | 4 decimal places. | (3) | and $0 < \alpha < 90^{\circ}$. | (4) | |---|---|---------| | | | (4) | | | (b) Hence find the maximum value of $3 \cos \theta + 4 \sin \theta$ and the smallest positive v θ for which this maximum occurs. | alue of | | | | (3) | | | The temperature, $f(t)$, of a warehouse is modelled using the equation | | | | $f(t) = 10 + 3\cos(15t)^{\circ} + 4\sin(15t)^{\circ},$ | | | | where <i>t</i> is the time in hours from midday and $0 \le t < 24$. | | | | (c) Calculate the minimum temperature of the warehouse as given by this model. | . (2) | | | (d) Find the value of t when this minimum temperature occurs | | | | (d) Find the value of t when this minimum temperature occurs. | (3) | | | | | | | | | | _ | Question 8 continued | | | |----------------------|------------------|-----| | | | - | | | | - | | | | - | | | | - | | | | - | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | - (| | | , | | | | (Total 12 marks) |) | ## mock papers 4 1. Figure 1 Figure 1 shows part of the curve with equation $y = -x^3 + 2x^2 + 2$, which intersects the x-axis at the point A where $x = \alpha$. To find an approximation to α , the iterative formula $$x_{n+1} = \frac{2}{(x_n)^2} + 2$$ is used. (a) Taking $x_0 = 2.5$, find the values of x_1 , x_2 , x_3 and x_4 . Give your answers to 3 decimal places where appropriate. **(3)** (b) Show that $\alpha = 2.359$ correct to 3 decimal places. (3) | 2. (a) Use the identity $\cos^2 \theta + \sin^2 \theta = 1$ to prove that $\tan^2 \theta = \sec^2 \theta - 1$. | | |---|-----| | | (2) | | (b) Solve, for $0 \le \theta < 360^{\circ}$, the equation | | | $2\tan^2\theta + 4\sec\theta + \sec^2\theta = 2$ | (6) | re introduced onto an island. The number of rabbits, P , t years after they was modelled by the equation | ere | |--|-----| | $P = 80e^{\frac{1}{5}t}, \qquad t \in \mathbb{R}, \ t \geqslant 0$ | | | own the number of rabbits that were introduced to the island. | (1) | | | | | e number of years it would take for the number of rabbits to first exce | | | | (2) | | $\frac{P}{t}$. | (2) | | when $\frac{\mathrm{d}P}{\mathrm{d}t} = 50$. | | | when $\frac{1}{\mathrm{d}t} = 30$. | (3) | (i) Differentiate with respect to <i>x</i> | | |---|----------------------| | (a) $x^2 \cos 3x$ | | | 1 (2 1) | (3) | | (b) $\frac{\ln(x^2+1)}{x^2+1}$ | (4) | | | (4) | | (ii) A curve C has the equation | | | $y = \sqrt{(4x+1)}, x > -\frac{1}{4}, y > 0$ | | | The point P on the curve has x -coordinate 2. Find an equation of the P in the form and P where P where P and a graintegers | ne tangent to C at | | P in the form $ax + by + c = 0$, where a, b and c are integers. | (6) | 5. Figure 2 Figure 2 shows a sketch of part of the curve with equation y = f(x), $x \in \mathbb{R}$. The curve meets the coordinate axes at the points A(0,1-k) and $B(\frac{1}{2}\ln k,0)$, where k is a constant and k > 1, as shown in Figure 2. On separate diagrams, sketch the curve with equation (a) $$y = |f(x)|,$$ (3) (b) $$y = f^{-1}(x)$$. (2) Show on each sketch the coordinates, in terms of k, of each point at which the curve meets or cuts the axes. Given that $f(x) = e^{2x} - k$, (c) state the range of f, (1) (d) find $f^{-1}(x)$, (3) (e) write down the domain of f^{-1} . (1) | • | (a) Use the identity $\cos(A+B) = \cos A \cos B - \sin A \sin B$, to show that | | |---|---|---------------------| | | $\cos 2A = 1 - 2\sin^2 A$ | (2) | | | The curves C and C have equations | (2) | | | The curves C_1 and C_2 have equations | | | | $C_1: y = 3\sin 2x$ | | | | $C_2: y = 4\sin^2 x - 2\cos 2x$ | | | | (b) Show that the x-coordinates of the points where C_1 and C_2 intersect satisfy equation | the | | | $4\cos 2x + 3\sin 2x = 2$ | (2) | | | | (3) | | | (c) Express $4\cos 2x + 3\sin 2x$ in the form $R\cos(2x - \alpha)$, where $R > 0$ and $0 < \alpha < 1$ giving the value of α to 2 decimal places. | 90°, | | | | (3) | | | (d) Hence find, for $0 \le x < 180^{\circ}$, all the solutions of | | | | $4\cos 2x + 3\sin 2x = 2$ | | | | giving your answers to 1 decimal place. | <i>(</i> 1) | | | | (4) | _ | | | | The function f is defined by | | |---|-----| | $f(x) = 1 - \frac{2}{(x+4)} + \frac{x-8}{(x-2)(x+4)}, x \in \mathbb{R}, \ x \neq -4, \ x \neq 2$ | | | (a) Show that $f(x) = \frac{x-3}{x-2}$ | (5) | | The function g is defined by | | | $g(x) = \frac{e^x - 3}{e^x - 2}, x \in \mathbb{R}, \ x \neq \ln 2$ | | | (b) Differentiate $g(x)$ to show that $g'(x) = \frac{e^x}{(e^x - 2)^2}$ | (3) | | (c) Find the exact values of x for which $g'(x) = 1$ | (4) | 3. (a) Write down $\sin 2x$ in terms of $\sin x$ and $\cos x$. | | |---|-----| | (a) Write down sin 2x in terms of sin x and cos x. | (1) | | (b) Find, for $0 < x < \pi$, all the solutions of the equation | | | $\csc x - 8\cos x = 0$ | | | giving your answers to 2 decimal places. | (5) | Question 8 continued | | | |----------------------|---|-----------| Q8 | | | (Total 6 marks) TOTAL FOR PAPER: 75 MARKS | |