NOTICE TO CUSTOMER:

The sale of this product is intended for use of the original purchaser only and for use only on a single computer system. Duplicating, selling, or otherwise distributing this product is a violation of the law; your license of the product will be terminated at any moment if you are selling or distributing the products.

No parts of this book may be reproduced, stored in a retrieval system, of transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Answer all questions.

- 1 (a) Find the roots of the equation $m^2 + 2m + 2 = 0$ in the form a + ib. (2 marks)
 - (b) (i) Find the general solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2\frac{\mathrm{d}y}{\mathrm{d}x} + 2y = 4x \tag{6 marks}$$

- (ii) Hence express y in terms of x, given that y = 1 and $\frac{dy}{dx} = 2$ when x = 0.

 (4 marks)
- 2 (a) Find $\int_0^a xe^{-2x} dx$, where a > 0. (5 marks)
 - (b) Write down the value of $\lim_{a\to\infty} a^k e^{-2a}$, where k is a positive constant. (1 mark)
 - (c) Hence find $\int_0^\infty x e^{-2x} dx$. (2 marks)
- 3 (a) Show that $y = x^3 x$ is a particular integral of the differential equation

$$\frac{dy}{dx} + \frac{2xy}{x^2 - 1} = 5x^2 - 1$$
 (3 marks)

(b) By differentiating $(x^2 - 1)y = c$ implicitly, where y is a function of x and c is a constant, show that $y = \frac{c}{x^2 - 1}$ is a solution of the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{2xy}{x^2 - 1} = 0 \tag{3 marks}$$

(c) Hence find the general solution of

$$\frac{dy}{dx} + \frac{2xy}{x^2 - 1} = 5x^2 - 1$$
 (2 marks)

4 (a) Use the series expansion

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \dots$$

to write down the first four terms in the expansion, in ascending powers of x, of ln(1-x). (1 mark)

(b) The function f is defined by

$$f(x) = e^{\sin x}$$

Use Maclaurin's theorem to show that when f(x) is expanded in ascending powers of x:

(i) the first three terms are

$$1 + x + \frac{1}{2}x^2 \tag{6 marks}$$

- (ii) the coefficient of x^3 is zero. (3 marks)
- (c) Find

$$\lim_{x \to 0} \frac{e^{\sin x} - 1 + \ln(1 - x)}{x^2 \sin x} \tag{4 marks}$$

Turn over for the next question

5 (a) The function y(x) satisfies the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{f}(x, y)$$

where

$$f(x,y) = x \ln x + \frac{y}{x}$$

and

$$y(1) = 1$$

(i) Use the Euler formula

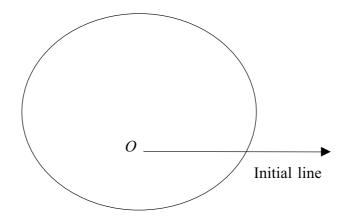
$$y_{r+1} = y_r + h f(x_r, y_r)$$

with h = 0.1, to obtain an approximation to y(1.1).

(3 marks)

(ii) Use the formula

$$y_{r+1} = y_{r-1} + 2h f(x_r, y_r)$$


with your answer to part (a)(i) to obtain an approximation to y(1.2), giving your answer to three decimal places. (4 marks)

(b) (i) Show that $\frac{1}{x}$ is an integrating factor for the first-order differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{1}{x}y = x \ln x \tag{3 marks}$$

- (ii) Solve this differential equation, given that y = 1 when x = 1. (6 marks)
- (iii) Calculate the value of y when x = 1.2, giving your answer to three decimal places. (1 mark)

- 6 (a) A circle C_1 has cartesian equation $x^2 + (y 6)^2 = 36$. Show that the polar equation of C_1 is $r = 12 \sin \theta$.
 - (b) A curve C_2 with polar equation $r = 2\sin\theta + 5$, $0 \le \theta \le 2\pi$ is shown in the diagram.

Calculate the area bounded by C_2 .

(6 marks)

(c) The circle C_1 intersects the curve C_2 at the points P and Q. Find, in surd form, the area of the quadrilateral OPMQ, where M is the centre of the circle and O is the pole.

(6 marks)

END OF QUESTIONS

Practice 2

	Leave
$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 + 2\sin y$	
It is given that $y = 1$ at $x = 0$.	
Use the approximation $\frac{y_1 - y_0}{h} = \left(\frac{dy}{dx}\right)_0$ with a step length of $h = 0.1$ to find estimates of	
y at $x = 0.1$ and at $x = 0.2$, giving your answers to 4 decimal places.	
(5)	

Question 1 continued		Leav blank
		01
		Q1
	(Total 5 marks)	

	Lea
	bla
$2. \text{Given that } y = x^3 \ln x ,$	
$a \cdot dy \cdot d^2y \cdot d^3y$	
(a) find $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ and $\frac{d^3y}{dx^3}$.	(5)
	(3)
(b) Find the Taylor series expansion of $x^3 \ln x$ in ascending powers of $(x-1)$ up	to and
including the term in $(x-1)^3$.	(2)
	(3)

Question 2 continued	Leave

Question 2 continued	Leave blank

Question 2 continued		Leav
		Q2
	(Total 8 marks)	

3.	(a)	Use De Moivre's theorem to show that	Leav
	(4)	Coo 2 C 11202112 C C CATO II CO C	
		$\cos 5\theta = 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta$	
		(5)	
	(b)	Hence find the two positive solutions of	
		$32x^5 - 40x^3 + 10x + 1 = 0,$	
		giving your answers to 3 decimal places.	
		(6)	

Question 3 continued	Leave blank

Question 3 continued	blank

Question 3 continued	Leave blank
	al 11 marks) Q3

	Leave blank
4. For $n \in \mathbb{Z}^+$, show, using mathematical induction, that	
(i) $ \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & 0 & 0 \\ n & 1 & 0 \\ n(n+2) & 2n & 1 \end{pmatrix}, $	
(5)	
(ii) $(2^{3n+1} + 5)$ is divisible by 7.	
(5)	

Question 4 continued	Leave blank

Question 4 continued	Leave blank

Question 4 continued	Le bl	eav lan
		^
	(Total 10 marks)	Q 4

5.	Given that	Leave blank
	$\mathbf{a} = \mathbf{i} + 7\mathbf{j} + 9\mathbf{k}$ and $\mathbf{b} = -\mathbf{i} + 3\mathbf{j} + \mathbf{k}$,	
	(a) show that $\mathbf{a} \times \mathbf{b} = c(2\mathbf{i} + \mathbf{j} - \mathbf{k})$, and state the value of the constant c . (2)	
	The plane Π_1 passes through the point (3, 1, 3) and the vector $\mathbf{a} \times \mathbf{b}$ is perpendicular to Π_1 .	
	(b) Find a cartesian equation for the plane Π_1 . (2)	
	The line l_1 has equation $\mathbf{r} = \mathbf{i} - 2\mathbf{k} + \lambda \mathbf{a}$.	
	(c) Show that the line l_1 lies in the plane Π_1 . (2)	
	The line l_2 has equation $\mathbf{r} = \mathbf{i} + \mathbf{j} + \mathbf{k} + \mu \mathbf{b}$. The line l_2 lies in a plane Π_2 , which is parallel to the plane Π_1 .	
	(d) Find a cartesian equation of the plane Π_2 . (2)	
	(e) Find the distance between the planes Π_1 and Π_2 . (3)	

Question 5 continued	Leave blank

Question 5 continued	Leav blan

Question 5 continued	Le bl	eave lank
		75
	(Total 11 marks)	Q5

_		
6.	$\mathbf{M} = \begin{pmatrix} 11 & -5\sqrt{3} \\ -5\sqrt{3} & 1 \end{pmatrix}$	
	Given that λ_1 and λ_2 are the eigenvalues of M and $\lambda_1 > \lambda_2$,	
	(a) show that $\lambda_1 = 16$ and find the value of λ_2 .	(4)
	(b) Find eigenvectors corresponding to the eigenvalues λ_1 and λ_2 .	(4)
	Given that there is an orthogonal matrix P such that P ⁻¹ MP is the diagonal matrix where $\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$,	D,
	(c) find the matrix P ,	(2)
	(d) verify that $\mathbf{P}^{-1}\mathbf{M}\mathbf{P} = \mathbf{D}$.	(4)
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_

Question 6 continued	Leav

Question 6 continued	Leave blank

Question 6 continued	Lea blai	ve nk
	Q	6
	(Total 14 marks)	

7.	The point P represents the complex number z in an Argand diagram. Point P moves on the curve C given by the equation	Leave blank
	z-4+4i =2 z-1+i	
	(a) Show that C is a circle whose equation may be written $ z = k$, giving the exact value of k .	
	(5)	
	(b) Draw an Argand diagram showing the circle C and the points representing the complex numbers $1 - i$ and $4 - 4i$.	
	(3)	
	(c) For the points on the circle C , find the maximum and minimum values of $ z-4+4i $.	
	(3)	
	The transformation T from the z-plane to the w-plane is given by $w = z + \frac{8}{z}$.	
	(d) Show that <i>T</i> maps the curve <i>C</i> onto a line segment in the <i>w</i> -plane and define this line segment by giving its equation and the coordinates of its end points.	
	(5)	

Question 7 continued	Leave blank

Question 7 continued	Leave blank

Question 7 continued		Leav
		Q'
	(Total 16 marks)	
	TOTAL FOR PAPER: 75 MARKS	
END		

Copyright © mppe.org.uk and its license. All Rights Reserved

Answer all questions.

1 The function y(x) satisfies the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{f}(x, y)$$

where

$$f(x, y) = \ln(1 + x^2 + y)$$

and

$$y(1) = 0.6$$

(a) Use the Euler formula

$$y_{r+1} = y_r + h f(x_r, y_r)$$

with h = 0.05, to obtain an approximation to y(1.05), giving your answer to four decimal places. (3 marks)

(b) Use the improved Euler formula

$$y_{r+1} = y_r + \frac{1}{2}(k_1 + k_2)$$

where $k_1 = h f(x_r, y_r)$ and $k_2 = h f(x_r + h, y_r + k_1)$ and h = 0.05, to obtain an approximation to y(1.05), giving your answer to four decimal places. (6 marks)

2 A curve has polar equation $r(1 - \sin \theta) = 4$. Find its cartesian equation in the form y = f(x).

3 (a) Show that x^2 is an integrating factor for the first-order differential equation

$$\frac{dy}{dx} + \frac{2}{x}y = 3(x^3 + 1)^{\frac{1}{2}}$$
 (3 marks)

(b) Solve this differential equation, given that y = 1 when x = 2. (6 marks)

4 (a) Explain why
$$\int_0^e \frac{\ln x}{\sqrt{x}} dx$$
 is an improper integral. (1 mark)

(b) Use integration by parts to find
$$\int x^{-\frac{1}{2}} \ln x \, dx$$
. (3 marks)

(c) Show that
$$\int_0^e \frac{\ln x}{\sqrt{x}} dx$$
 exists and find its value. (4 marks)

5 Find the general solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 4\frac{\mathrm{d}y}{\mathrm{d}x} + 3y = 6 + 5\sin x \tag{12 marks}$$

6 The function f is defined by $f(x) = (1 + 2x)^{\frac{1}{2}}$.

(a) (i) Find
$$f'''(x)$$
. (4 marks)

(ii) Using Maclaurin's theorem, show that, for small values of x,

$$f(x) \approx 1 + x - \frac{1}{2}x^2 + \frac{1}{2}x^3$$
 (4 marks)

(b) Use the expansion of e^x together with the result in part (a)(ii) to show that, for small values of x,

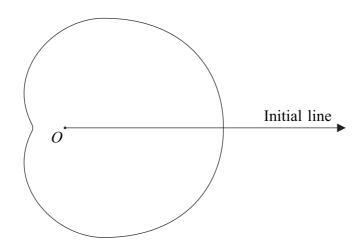
$$e^{x}(1+2x)^{\frac{1}{2}} \approx 1+2x+x^{2}+kx^{3}$$

where k is a rational number to be found.

(3 marks)

- (c) Write down the first four terms in the expansion, in ascending powers of x, of e^{2x} .

 (1 mark)
- (d) Find


$$\lim_{x \to 0} \frac{e^x (1 + 2x)^{\frac{1}{2}} - e^{2x}}{1 - \cos x}$$
 (4 marks)

Turn over for the next question

7 A curve C has polar equation

$$r = 6 + 4\cos\theta, \qquad -\pi \leqslant \theta \leqslant \pi$$

The diagram shows a sketch of the curve C, the pole O and the initial line.

(a) Calculate the area of the region bounded by the curve C.

(6 marks)

(b) The point P is the point on the curve C for which $\theta = \frac{2\pi}{3}$.

The point Q is the point on C for which $\theta = \pi$.

Show that QP is parallel to the line $\theta = \frac{\pi}{2}$.

(4 marks)

(c) The line PQ intersects the curve C again at a point R.

The line RO intersects C again at a point S.

(i) Find, in surd form, the length of PS.

(4 marks)

(ii) Show that the angle *OPS* is a right angle.

(1 mark)

END OF QUESTIONS

Practice 4

1. The variable y satisfies the differential equation	bl
$\frac{\mathrm{d}y}{\mathrm{d}x} = x + \cos y.$	
It is given that $y = 0.6$ at $x = 0$.	
Use the approximation $\left(\frac{dy}{dx}\right)_0 \approx \frac{y_1 - y_0}{h}$, with a step length of 0.05, to estimate the values of y at $x = 0.05$ and $x = 0.1$, giving your answers to four decimal places. (6)	
2	

Question 1 continued	Leave blank
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
(Total 6 mark	Q1

2. $\mathbf{M} = \begin{pmatrix} 1 & p & 2 \\ 0 & 3 & q \\ 2 & p & 1 \end{pmatrix},$ where p and q are constants.	Leave
Given that $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ is an eigenvector of \mathbf{M} ,	
(a) show that $q = 4p$.	(3)
Given also that $\lambda = 5$ is an eigenvalue of M , and $p < 0$ and $q < 0$, find	
(b) the values of p and q ,	(4)
(c) an eigenvector corresponding to the eigenvalue $\lambda = 5$.	(3)

Question 2 continued	Leav blan

Question 2 continued		Leave
		Q2
	(Total 10 marks)	

3.	$(x^{2}+1)\frac{d^{2}y}{dx^{2}} = 2y^{2} + (1-2x)\frac{dy}{dx}.$ (I)	
	(a) By differentiating equation (I) with respect to x, show that $ (x^2 + 1)\frac{d^3y}{dx^3} = (1 - 4x)\frac{d^2y}{dx^2} + (4y - 2)\frac{dy}{dx}. $ (3)	
	Given that $y = 1$ and $\frac{dy}{dx} = 1$ at $x = 0$,	
	(b) find the series solution for y , in ascending powers of x , up to and including the term in x^3 .	
	(4)	
	(c) Use your series to estimate the value of y at $x = -0.5$, giving your answer to two	
	decimal places. (1)	

Question 3 continued	Leave

Question 3 continued	Leave blank

Question 3 continued	Lebi	eav lanl
	Q3	3
	(Total 8 marks)	

4. The point <i>P</i> represents a complex number <i>z</i> on an Argand diagram such that	
z-3 = 2 z .	
(a) Show that, as z varies, the locus of P is a circle, and give the coordinates of the cen and the radius of the circle.	
	(5)
The point Q represents a complex number z on an Argand diagram such that	
$ z+3 = z-i\sqrt{3} .$	
(b) Sketch, on the same Argand diagram, the locus of P and the locus of Q as z varies	(5)
(c) On your diagram shade the region which satisfies	
$ z-3 \ge 2 z $ and $ z+3 \ge z-i\sqrt{3} $.	(2)

Question 4 continued	Leave blank

Question 4 continued	Leave blank

		Leave blank
Question 4 continued		
		Q4
(Total	l 12 marks)	

		Leave blank
5.	$\mathbf{A} = \begin{pmatrix} k & -2 \\ 1 - k & k \end{pmatrix}, \text{ where } k \text{ is constant.}$	
	A transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ is represented by the matrix A .	
	(a) Find the value of k for which the line $y = 2x$ is mapped onto itself under T . (3)	
	(b) Show that A is non-singular for all values of k . (3)	
	(c) Find A^{-1} in terms of k . (2)	
	A point P is mapped onto a point Q under T .	
	The point Q has position vector $\begin{pmatrix} 4 \\ -3 \end{pmatrix}$ relative to an origin O .	
	Given that $k = 3$,	
	(d) find the position vector of P . (3)	

Question 5 continued	Leav blan

Question 5 continued	L. b.

Question 5 continued	Leave blank
	Q5
(Total 11	marks)

		Leave
6.	De Moivre's theorem states that	blank
	$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta \text{ for } n \in \mathbb{R}.$	
	(a) Use induction to prove de Moivre's theorem for $n \in \mathbb{Z}^+$.	
	(5)	
	(b) Show that	
	$\cos 5\theta = 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta.$	
	(5)	
	(c) Hence show that $2\cos\frac{\pi}{10}$ is a root of the equation	
	$x^4 - 5x^2 + 5 = 0.$	
	3x + 3 = 3.	

Question 6 continued	Leav blan

Question 6 continued	Leave

Question 6 continued	Leav blan
	(Total 13 marks)

Leave blank

7.

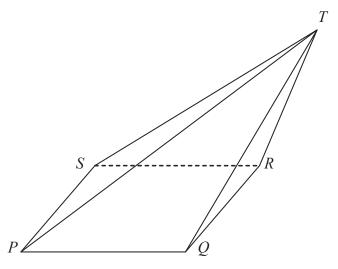


Figure 1

Figure 1 shows a pyramid *PQRST* with base *PQRS*.

The coordinates of P, Q and R are P(1, 0, -1), Q(2, -1, 1) and R(3, -3, 2).

Find

(a)
$$\overrightarrow{PQ} \times \overrightarrow{PR}$$
, (3)

(b) a vector equation for the plane containing the face PQRS, giving your answer in the form $\mathbf{r} \cdot \mathbf{n} = d$.

(2)

The plane Π contains the face *PST*. The vector equation of Π is $\mathbf{r} \cdot (\mathbf{i} - 2\mathbf{j} - 5\mathbf{k}) = 6$.

(c) Find cartesian equations of the line through P and S.

(5)

(d) Hence show that PS is parallel to QR.

(2)

Given that PQRS is a parallelogram and that T has coordinates (5, 2, -1),

(e) find the volume of the pyramid *PQRST*.

(3)

Question 7 continued	Leave blank

Question 7 continued	Leave blank

Question 7 continued		Leave blank
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	

Question 7 continued			Leav
Xaconon / continued			
			Q'
		(Total 15 marks)	
	TOTAL FOR	PAPER: 75 MARKS	

Answer all questions.

1 The function y(x) satisfies the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{f}(x, y)$$

where

$$f(x, y) = x^2 - y^2$$

and

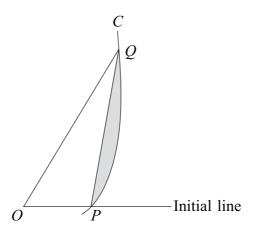
$$y(2) = 1$$

(a) Use the Euler formula

$$y_{r+1} = y_r + h f(x_r, y_r)$$

with h = 0.1, to obtain an approximation to y(2.1).

(3 marks)


(b) Use the formula

$$y_{r+1} = y_{r-1} + 2hf(x_r, y_r)$$

with your answer to part (a), to obtain an approximation to y(2.2).

(3 marks)

2 The diagram shows a sketch of part of the curve C whose polar equation is $r = 1 + \tan \theta$. The point O is the pole.

The points P and Q on the curve are given by $\theta = 0$ and $\theta = \frac{\pi}{3}$ respectively.

(a) Show that the area of the region bounded by the curve C and the lines OP and OQ is

$$\frac{1}{2}\sqrt{3} + \ln 2 \tag{6 marks}$$

- (b) Hence find the area of the shaded region bounded by the line PQ and the arc PQ of C.

 (3 marks)
- 3 (a) Find the general solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4\frac{\mathrm{d}y}{\mathrm{d}x} + 5y = 5 \tag{6 marks}$$

- (b) Hence express y in terms of x, given that y = 2 and $\frac{dy}{dx} = 3$ when x = 0. (4 marks)
- 4 (a) Explain why $\int_{1}^{\infty} xe^{-3x} dx$ is an improper integral. (1 mark)

(b) Find
$$\int xe^{-3x} dx$$
. (3 marks)

(c) Hence evaluate
$$\int_{1}^{\infty} xe^{-3x} dx$$
, showing the limiting process used. (3 marks)

5 By using an integrating factor, find the solution of the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{4x}{x^2 + 1} y = x$$

given that y = 1 when x = 0. Give your answer in the form y = f(x). (9 marks)

6 A curve C has polar equation

$$r^2 \sin 2\theta = 8$$

- (a) Find the cartesian equation of C in the form y = f(x). (3 marks)
- (b) Sketch the curve C. (1 mark)
- (c) The line with polar equation $r = 2 \sec \theta$ intersects C at the point A. Find the polar coordinates of A. (4 marks)
- 7 (a) (i) Write down the expansion of ln(1+2x) in ascending powers of x up to and including the term in x^3 . (2 marks)
 - (ii) State the range of values of x for which this expansion is valid. (1 mark)
 - (b) (i) Given that $y = \ln \cos x$, find $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ and $\frac{d^3y}{dx^3}$. (4 marks)
 - (ii) Find the value of $\frac{d^4y}{dx^4}$ when x = 0. (3 marks)
 - (iii) Hence, by using Maclaurin's theorem, show that the first two non-zero terms in the expansion, in ascending powers of x, of $\ln \cos x$ are

$$-\frac{x^2}{2} - \frac{x^4}{12}$$
 (2 marks)

(c) Find

$$\lim_{x \to 0} \left[\frac{x \ln(1+2x)}{x^2 - \ln \cos x} \right] \tag{3 marks}$$

8 (a) Given that $x = e^t$ and that y is a function of x, show that:

(i)
$$x \frac{dy}{dx} = \frac{dy}{dt}$$
; (3 marks)

(ii)
$$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - \frac{\mathrm{d}y}{\mathrm{d}t}.$$
 (3 marks)

(b) Hence find the general solution of the differential equation

$$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 6x \frac{\mathrm{d}y}{\mathrm{d}x} + 6y = 0 \tag{5 marks}$$

END OF QUESTIONS

Answer all questions.

1 The function y(x) satisfies the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{f}(x, y)$$

where

$$f(x, y) = \frac{x^2 + y^2}{x + y}$$

and

$$y(1) = 3$$

(a) Use the Euler formula

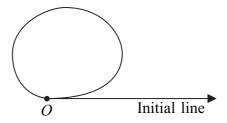
$$y_{r+1} = y_r + h f(x_r, y_r)$$

with h = 0.2, to obtain an approximation to y(1.2).

(3 marks)

(b) Use the improved Euler formula

$$y_{r+1} = y_r + \frac{1}{2}(k_1 + k_2)$$

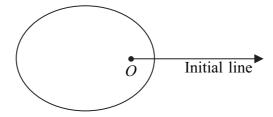

where $k_1 = hf(x_r, y_r)$ and $k_2 = hf(x_r + h, y_r + k_1)$ and h = 0.2, to obtain an approximation to y(1.2), giving your answer to four decimal places. (5 marks)

2 (a) Show that $\frac{1}{x^2}$ is an integrating factor for the first-order differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{2}{x}y = x \tag{3 marks}$$

(b) Hence find the general solution of this differential equation, giving your answer in the form y = f(x). (4 marks)

3 The diagram shows a sketch of a loop, the pole O and the initial line.


The polar equation of the loop is

$$r = (2 + \cos \theta) \sqrt{\sin \theta}, \quad 0 \le \theta \le \pi$$

Find the area enclosed by the loop.

(6 marks)

- 4 (a) Use integration by parts to show that $\int \ln x \, dx = x \ln x x + c$, where c is an arbitrary constant. (2 marks)
 - (b) Hence evaluate $\int_0^1 \ln x \, dx$, showing the limiting process used. (4 marks)
- 5 The diagram shows a sketch of a curve C, the pole O and the initial line.

The curve C has polar equation

$$r = \frac{2}{3 + 2\cos\theta}, \quad 0 \leqslant \theta \leqslant 2\pi$$

- (a) Verify that the point L with polar coordinates $(2, \pi)$ lies on C. (1 mark)
- (b) The circle with polar equation r = 1 intersects C at the points M and N.
 - (i) Find the polar coordinates of M and N. (3 marks)
 - (ii) Find the area of triangle *LMN*. (4 marks)
- (c) Find a cartesian equation of C, giving your answer in the form $9y^2 = f(x)$. (5 marks)

Turn over for the next question

- 6 The function f is defined by $f(x) = e^{2x}(1+3x)^{-\frac{2}{3}}$.
 - (a) (i) Use the series expansion for e^x to write down the first four terms in the series expansion of e^{2x} . (2 marks)
 - (ii) Use the binomial series expansion of $(1+3x)^{-\frac{2}{3}}$ and your answer to part (a)(i) to show that the first three non-zero terms in the series expansion of f(x) are $1+3x^2-6x^3$. (5 marks)
 - (b) (i) Given that $y = \ln(1 + 2\sin x)$, find $\frac{d^2y}{dx^2}$. (4 marks)
 - (ii) By using Maclaurin's theorem, show that, for small values of x,

$$\ln(1+2\sin x) \approx 2x - 2x^2 \tag{2 marks}$$

(c) Find

$$\lim_{x \to 0} \frac{1 - f(x)}{x \ln(1 + 2\sin x)} \tag{3 marks}$$

7 (a) Given that $x = e^t$ and that y is a function of x, show that

$$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - \frac{\mathrm{d}y}{\mathrm{d}t} \tag{7 marks}$$

(b) Hence show that the substitution $x = e^t$ transforms the differential equation

$$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 4x \frac{\mathrm{d}y}{\mathrm{d}x} = 10$$

into

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - 5\frac{\mathrm{d}y}{\mathrm{d}t} = 10 \tag{2 marks}$$

- (c) Find the general solution of the differential equation $\frac{d^2y}{dt^2} 5\frac{dy}{dt} = 10$. (5 marks)
- (d) Hence solve the differential equation $x^2 \frac{d^2y}{dx^2} 4x \frac{dy}{dx} = 10$, given that y = 0 and $\frac{dy}{dx} = 8$ when x = 1.

END OF QUESTIONS